Institute for Transport Studies

EARTH & ENVIRONMENT

Transport + Network Science = Transport Network Science?

> Richard Connors Senior Research Fellow

Research in collaboration with

Steven O'Hare [PhD student]

David Watling [Professor]

What structure [topology] do these networks have? [taxonomy?]

- Is network structure/topology important? [When/where?]
- Is it meaningful to compare different networks, and their performance? [Could we make it meaningful?]
- Can we understand anything about transferability e.g. of a transport policy? [If policy A works in city X will it work in city Y?]
- Are there common emergent properties arising from network structure? [Would this allow representation of detailed networks in an aggregate way?]

In the 1960s there was an interest in considering the properties of "idealized" networks...

Street Routing Topologies: [Holroyd 1966]

Network Distance

Direct Distance

Routing Factor

Direct

Triangular ·

Radial

External ring

External ring/radial

Hexagonal

Ignores congestion, which would need demand location.

Fig. 3.10. Alternative routing systems within circular regions. Source: Holroyd,

N-directional (n=4)

Compare for theoretical city networks...

Planar Networks

Topology & Routing Factor: [Smeed 1968]

Fig. 3.7. Average distance travelled (d) on some imaginary and real road networks. A =area within boundary (broken line). Source: Smeed, 1968, pp. 5, 23.

9

Planar Networks

Theoretical Network Topologies [1850-1963]

Can we add anything to this?

Who is interested in such questions?

- In the last 20 years the research area of Network Science has exploded in terms of activity.
- Attempt to characterise the shape and structure of networks often huge networks that are difficult to observe directly e.g. the WWW.
- Investigate how structure affects network properties (e.g. efficiency, vulnerability)

A simple idea to start with....

"Performance" vs "Structure"

Structure/Topology

How to proceed?

What is on the x-axis? How to arrange networks in a meaningful order? Metrics & measure from Network Science? Typically non-planar no congestion no demand.

What is on the y-axis?

Price of Anarchy? [Some work exists] Depends on demand, which is another network. Tricky!

Use real networks?

Range?

What methodology?

How realistic? Generation?

How to proceed?

What is on the x-axis? How to arrange networks in a meaningful order? Metrics & measures from Network Science? Typically non-planar no congestion no demand.

What is on the y-axis?

What Methodology?

Price of Anarchy? [Some work exists] Depends on demand, which is another network. Tricky!

Use real networks?

Use synthetic networks? Range?

How realistic? Generation?

Example = Meshedness [= relative number of cycles]

How to proceed?

What is on the x-axis? How to arrange networks in a meaningful order? Metrics & measures from Network Science? Typically non-planar no congestion no demand.

What is on the y-axis?

Price of Anarchy? [Some work exists] Depends on demand, which is another network. Tricky!

What Methodology?

Use real networks?

How realistic? Generation? Selfish routing, to minimise individual travel cost = User Equilibrium (UE).

This is known to be inefficient.

Total Network Travel Cost (TTC) is minimised by **System Optimal (SO)** routing

$$c(x_1) = x_1 \\ c(x_2) = 100 \\ c(x_1) = x_1 \\ c(x_2) = 100 \\ c(x_2) = 100 \\ c(x_1) = x_1 \\ c(x_2) = 100 \\ c(x_2) = 100 \\ c(x_1) = x_1 \\ c(x_2) = 100 \\ c(x_2) = 100 \\ c(x_1) = x_1 \\ c(x_2) = 100 \\ c(x_2) = 100 \\ c(x_1) = x_1 \\ c(x_2) = 100 \\ c(x_2) = 100 \\ c(x_1) = x_1 \\ c(x_2) = 100 \\ c(x_$$

 $q_{OD} = 100$

Selfish routing, to minimise individual travel cost = User Equilibrium (UE).

This is known to be inefficient.

Total Network Travel Cost (TTC) is minimised by **System Optimal (SO)** routing

The 'Price of Anarchy' (PoA) is defined as the ratio of the total travel cost (TTC) under UE routing to the total travel cost under SO routing:

$$PoA = \frac{TTC_{UE}}{TTC_{SO}} = \frac{\sum_{i} x_i^{UE} c_i(x_i^{UE})}{\sum_{i} x_i^{SO} c_i(x_i^{SO})}$$

 $1 \le PoA$ and for linear link cost functions $PoA \le \frac{4}{3}$ A (not tight) upper bound is given by:

$$c_i = a_i + b_i x_i^{\beta_i} \text{ with all } \beta_i \le p$$
$$PoA \le \left[1 - p/(p+1)^{(p+1)/p}\right]^{-1}$$

How to proceed?

What is on the x-axis? How to arrange networks in a meaningful order? Metrics & measures from Network Science? Typically non-planar no congestion no demand.

What is on the y-axis?

Price of Anarchy? [Some work exists] Depends on demand, which is another network. Tricky!

What Methodology? Theoretical analysis? How? Empirically test networks. Use real networks?

Range?

Use synthetic networks?

How realistic? Generation?

"Performance" vs "Structure"

Structure/Topology

Illustrative example from Network Science

Price of Anarchy & Network Topology

Link cost functions:

 $c_i = a_i + b_i x_i$

where a_i , b_i randomly selected from:

$$a_i = \{1, 2, 3\}$$

 $b_i = \{1, 2, \dots, 100\}$

Source: Youn et al. 2008. Physical Review Letters, 101.

Price of Anarchy & Network Topology

PoA In Real Networks

Price of Anarchy does vary with demand and supply structure in real networks:

A single OD in each of 3 cities.

No explanation of what is going on.

Structure vs Performance

Study	Topologies	Network Size (n nodes, m links, (k): Average Node Degree)	Number of Network Realisations	Link Travel Time Functions t_i (t_{0i} : free-flow travel time, x_i : link flow, cap_i : link capacity)	Demand Structure	Main Performance Indicator
Wu et al. (2006)	Random; Scale-Free; Small World	n = 400; m = 1400; $\langle k \rangle = 7$	25	$\begin{aligned} t_i &= t_{0i} \left[1 + 0.15 \left(\frac{x_i}{cap_i} \right)^4 \right] \\ &- t_{0i} \in (0, 0.1] \text{ randomly selected for each link} \\ &- cap_i \in [20, 60] \text{ randomly selected for each link} \end{aligned}$	Random	Proportion of links over Capacity
Zhao and Gao (2007)	Regular Ring; Random; Scale-Free; Small World	n = 500; m = 1000; $\langle k \rangle = 4$	50	$t_i = t_{0i} \left[1 + 0.15 \left(\frac{x_i}{cap_i} \right)^4 \right]$ - $t_{0i} \in (0, 1]$ randomly selected for each link - $cap_i = 10000$ for each link	Uniform	Total Travel Time
Youn et al. (2008)	1D Regular Lattice; Random; Scale-Free; Small World	n = 100; m = 300; $\langle k \rangle = 6$	50	$\begin{array}{l} t_i = a_i + b_i x_i \\ -a_i \in \{1,2,3\} \text{ randomly allocated to each link} \\ -b_i \in \{1,2,,100\} \text{ randomly allocated to each link} \\ \end{array}$	Single OD pair	Price of Anarchy
Wu et al. (2008a)	Random; Scale-Free	n = 100; m = 1350; $\langle k \rangle = 2.7$	100	$t_i = t_{0i} \left[1 + 0.15 \left(\frac{x_i}{cap_i} \right)^4 \right]$ - $t_{0i} \in (0, 0.1]$ randomly selected for each link - $cap_i = C \forall i$ but the value of C is not defined	Not defined	Proportion of links over capacity
Wu et al. (2008b)	Regular Lattice; Random; Scale-Free; Small World	n = 100,, 1000; m = 100,, 1000; $\langle k \rangle = 2$	50	$t_i = t_{0i} \left[1 + 0.15 \left(\frac{x_i}{cap_i} \right)^4 \right]$ - $t_{0i} \in (0, 1]$ randomly selected for each link - cap_i is not defined	Random	Price of Anarchy
Sun et al. (2012)	Scale-Free with variable community structure	n = 100, 160, 220; m = 400, 640, 880; 4 communities	20	$t_{i} = t_{0i} \left[1 + 0.15 \left(\frac{x_{i}}{cap_{i}} \right)^{4} \right]$ - t_{0i} randomly selected for each link - $cap_{i} = 60 \forall i$	Random	Proportion of links over capacity
Zhu et al. (2014)	Scale-Free; Small World	n = 1000; m = 3000; $\langle k \rangle = 6$	Not defined	$t_{i} = t_{0i} \left[1 + 0.15 \left(\frac{x_{i}}{Ce_{i}} \right)^{4} \right]$ - $t_{0i} = 1$ for every link <i>i</i> between nodes <i>i</i> 1 and <i>i</i> 2 - $Ce_{i} = \min(Cn_{i1}/k_{i1}, Cn_{i2}/k_{i2})$, for which i) Cn_{j} is fixed and ii) $Cn_{j} = f(k_{j})$	Uniform; Gravity Model	Volume to Capacity ratio (V/C)

Network Science Examples

What we want...a spectrum of networks

What is on the x-axis? How to arrange networks in a meaningful order? Metrics & measures from Network Science? Typically non-planar no congestion no demand.

What is on the y-axis?

Price of Anarchy? [Some work exists] Depends on demand, which is another network. Tricky!

What Methodology? Theoretical analysis? How? Empirically test networks. Use real networks?

Range?

Use synthetic networks?

How realistic? Generation?

- 1. We examined performance (PoA) across a "spectrum" of synthetic road-like networks.
- 2. We tried to understand the "mountain peaks" structure of PoA as a function of demand.

The Generation of a Spectrum of Road Network Topologies – Node Generation

The Generation of a Spectrum of Road Network Topologies – Node Generation

Delaunay Triangulation

Minimum Spanning Tree

The Generation of a Spectrum of Road Network Topologies – Generation of the Spectrum

Step 3: Construct spectrum

Start with MST and add links from the DT (add links randomly to get total links = m)

Spectrum of Networks

Link cost functions

$$t_i = \frac{d_i}{48} \left[1 + 0.15 \left(\frac{x_i}{800} \right)^4 \right]$$

OD demand = q_r between each pair of nodes Define demand density ρ_{dem}

$$q_r = \frac{A\rho_{dem}}{n(n-1)}$$

- Not totally "realistic" as road networks
- More plausible than most (all?) existing studies of this sort
- Controllable. We can generate a spectrum as desired
- = first try. Lots of ways to improve details but general experimental method is the key.

(admission: not quite first try!!)

Experiments

Experiment	Domain Size	N. Nodes	Node Density	N. Links	Meshdness	Demand Density
1. Demand Density	6.25	100	16	158	0.3	1250, 1300, , 7900, 7950
2. Network Size	1.25, 1.875,, 30.625, 31.25	20, 30,, 490, 500	16	30, 46,, 782, 798	0.3	4350
3. Network Density	6.25	20, 25,, 295, 300	3.2 <i>,</i> 4,, 47.2, 48	30, 38,, 470, 478	0.3	4350
4. Network Connectivity	6.25	100	16	99, 104,, 284, 289	0, 0.03,, 0.95, 0.97	4350

= Total of 28,000 Networks solved for both UE and SO

Demand Density

n = 100, A = 6.25, d_{min} = 0.05, ρ_n =16 meshedness = 0.3

100 networks generated for each parameter setting

Demand Density

Demand Density

44

Network Size [& number of nodes & links increasing]

meshedness = 0.3

Network Size

Network Size

Network Connectivity [MST -> Delaunay]

$$M = 0 \longrightarrow M = 0.97$$

 d_{min} = 0.05, A = 6.25 ρ_{dem} = 4350 n = 100 ρ_n = 16

Network Size

Network Size

Network Density [node density increasing]

$$\rho_n = 3.2 \longrightarrow \rho_n = 48$$

 d_{min} = 0.05, A = 6.25 ρ_{dem} = 4350

Meshedness = 0.3

Network Size

Network Size

Conclusions/Questions

- Proposed ensemble analysis as an experimental approach (~ transport network science)
- Based on synthetic networks
 - Needs thought on what "realistic" means
 - Needs work on network generation
- Look at other performance measures (not just PoA).
- See systematic relationship between PoA and the **quantity** of demand & **quantity** of supply.
- Have not yet clearly extracted the (relative) importance of the **configuration** of demand & supply.
- Interesting complication that the (active) network changes with demand.

How does PoA depend on demand?

PoA In Real Networks

Price of Anarchy does vary with demand and supply structure in real networks:

A single OD in each of 3 cities.

No explanation of what is going on.

Parallel Routes Network with Linear Costs

Initially, small demand, will only get flow on link 1 At some level of demand link 2 will "activate".

The Price of Anarchy against Demand for the 'Two Parallel Links' Network

Under both UE and SO, the activation of a route leads to a slower rate of increase of *TTC*.

The effect of this on *PoA* differs depending on whether the activation occurs under UE or SO:

UE Activation \Rightarrow Numerator $\downarrow \Rightarrow PoA \downarrow$

$$PoA = \frac{TTC^{UE}}{TTC^{SO}} = \frac{\sum_{i} x_{i}^{UE} c(x_{i}^{UE})}{\sum_{i} x_{i}^{SO} c(x_{i}^{SO})}$$

SO Activation \Rightarrow Denominator $\downarrow \Rightarrow PoA \uparrow$

Ten Parallel Routes Network with Linear Costs

60

The Variation of the Price of Anarchy with Demand

Route DE-activation

 $q_{0-D2} = 1$

Sioux Falls network for a Single OD Pair

65

The Variation of the Price of Anarchy with Demand

Activations/Deactivations occur when the set of minimum OD cost routes changes (or minimum marginal total cost routes for SO).

Call activation/transition points η_{SO} and η_{UE}

Increasing demand can induce activation &/or deactivation of routes. [Note off, on, off, on]

PoA is differentiable except at UE transition points

 $c_i = a_i + b_i x_i^{\beta}$ If all cost functions are And link flow solutions are $x_i^{UE}(Q) \ x_i^{SO}(Q)$ $x_i^{SO}\left(\frac{Q}{\frac{\beta}{\beta}\beta+1}\right) = \frac{1}{\frac{\beta}{\beta}\beta+1} x_i^{UE}(Q)$ Then And hence $\eta_{SO} = \frac{\eta_{UE}}{\sqrt{\beta}} \eta_{UE}$

68

- The variation of PoA with travel demand is due to *activation* of routes at *different* levels of demand under UE and SO.
- We have analysis of the types and nature of the "peaks" and "troughs".

Can we define canonical/reference networks?

Can we compare real network performance with a 'reference' network? What are the limits of such 'ideal' transport systems?

properties of "1 sq km of network"

lattices and symmetric networks?

demand and supply conditions

vulnerability, resilience, redundancy

Connection to aggregation and network-free models.

Thank you.

Questions?