

An Agent-Based Approach to Modelling Public Transport Dynamics

Oded Cats o.cats@tudelft.nl

Research Seminar, Tokyo University, 11-08-2015

Challenge the future

Delft Univer

TUDelft

Outline

Concepts

- 1. PT assignment principles
- 2. Modelling PT dynamics
- 3. Agent-based simulation model

Applications

- 1. Congestion
- 2. Real-time travel information
- 3. Service disruptions
- 4. Control and operational strategies

PTA principles and approaches

Frequency-based: Assignment principles

• PT network is represented in terms of segments of lines

- Demand is assigned based on service frequencies
- Adopting concepts and solution methods from car traffic assignment

Frequency-based: Network representation

Schedule-based: Assignment principles

- PT network is represented in terms of individual vehicle trips/runs following a timetable
- Demand is assigned to specific trips, takes into account timedependent characteristics
- The concept of accumulative shortest path is not valid anymore

Schedule-based: Network representation

Schedule-based: Stop topology

Research Seminar, Tokyo University, 11-08-2015

TUDelft

Traditional assumptions

- Travel times is equal on all lines riding the same arc (FB)
- Passengers arrive randomly at stops
- No capacity constraints
- Perfect reliability (regularity FB; punctuality SB)
- Passengers board the first arriving vehicle
- Perfect infomration
- Homogenous travellers' population

Flow-dependent in-vehicle time

Flow-capacity ratio multiplier

- Already in the original presentation of optimal strategies
- on-board crowding

Delft

- Link travel time as a non-linear function of passenger flows
- Iterative network loading to obtain equilibrium
- BPR crowding function

$$\gamma_{\ell s}\left(q_{a}\right) = 1 + \alpha_{\ell}^{run} \cdot \left(\frac{q_{a}}{f_{\ell s} \cdot \kappa_{\ell}^{veh}}\right)^{\beta_{\ell}^{run}}, \quad a = \left(N_{\ell s}^{dep}, N_{\ell s^{+\ell}}^{arr}\right) \in A^{run}$$

- $q_a / (f_{ls} \cdot \kappa_l^{veh})$ is the saturation rate of the vehicle on the line segment;
- α_{ℓ}^{run} and β_{ℓ}^{run} are the BPR coefficient and exponent for running congestion.

Flow-dependent travel time

Effective frequency

- Assigning weights to waiting times
- Reliability effects and risk of denied boarding
- An infinite penalty when capacity is exceeded
- Reducing the nominal frequency by the BPR term

$$\begin{split} f_{\ell s}^{e\!f\!f}\left(\boldsymbol{q}_{a}\right) &= \frac{f_{\ell s}}{1 + \alpha_{\ell}^{wait}} \cdot \left(\frac{\boldsymbol{q}_{a}}{f_{\ell s} \cdot \kappa_{\ell}^{veh}}\right)^{\beta_{\ell}^{wait}}, \quad \boldsymbol{a} = \left(N_{\ell s}^{dep}, N_{\ell s}^{arr}\right) \in A^{run} \end{split}$$

$$t_{\ell s}^{wait}\left(q_{a}\right) = \frac{0.5}{f_{\ell s}^{eff}\left(q_{a}\right)} \cdot \left(1 + \sigma_{\ell s}\right)$$

ŤUDelft

Does not guarantee that capacity is not exceeded!

Average VOC ratio drops from 4.77 to 1.5 Number of over-saturated line segments drops from 45 to 10

Cpeda et al. (2006)

Failure-to-board probability

TUDelft

- FB: a quasi-dynamic model where *the share of passengers that exceeds the residual capacity* on the respective time period is transmitted to the next period
- SB: guarantees that capacity constraints are *satisfied at the* individual vehicle level by introducing new arcs between successive vehicle trips

13

Seating and priorities

Main trends in developments of PT assignment models (Liu et al 2010)

• Consistently lagged behind developments in traffic modeling

- Expected and emerging developments
 - Multi-agent simulation models
 - Dynamic loading process
 - Adaptive user decisions
 - Supply uncertainties

2.

Agent-based approach to PTA

Prominent research questions

- How does the **system perform** under various conditions?
- How can APTS be deployed most effectively to improve serive operations?
- How to **mitigate** and manage service **disruptions**?
- How could service providers and users become more adaptive by taking advantage of the abundance of real-time data?
- What is the **impact** of APTS measures?

Agent-based TAM

- Represents individual vehicles and travellers
- Emerging solution based on agents interaction with each other throughout the simulation
- En-route decisions
- Day-to-day learning as proxy to equilbrium conditions
- Integration with traffic simulation models

Implementation: BusMezzo

Transit Assignment and Operations Simulation Model

 A framework for analyzing transit performance under various operational conditions and APTS

- BusMezzo: integrated into Mezzo, a mesoscopic traffic simulation model
- Agent-based
- Operations-oriented
- Sources of uncertainty
- Adaptive decision making
- System level analysis

A modelling framework for Analyzing **Public Transport Operations**

Network representation

Public Transport Dynamics

Joint car and PT; mode-specifics Dwell times Fleet; vehicle scheduling Crowding and capacity

Operations planning Control and management strategies Adaptive route choice Real-time information

Transit performance

Passengers decisions

Demand representation

- $\lambda_{od}(t,\tau)$ Poisson arrival process
- Non-compensatory rule-based choice-set generation process
- En-route decisions
 - Assess the attributes of each avilable

 $v_{i,n} = \beta_{i,n} X_{i,n}$

path

TUDelft

 Calculate the *joint utility* of the bundled paths

$$v_{I,n} = ln \sum_{i \in I} e^{v_{i,n}}$$

- Path: outcome of successive decisions
- Preserve passenger integrity from one day to the other

Applications

Reliability and Control

Real-time Information

Network Resilience

Application: Increased capacity

The dynamics of reliability & congestion

- Route choice
- Service reliability
- Demand variation

How can the value of reduced congestion be quantified?

Evaluation of congestion effects

Appraisal of Increased Capacity

• Crowding factor in static/dynamic model: +3%/+60%

TUDelft

- Value of increased capacity: underestimated in static models
- Overestimation in BusMezzo: currently incorporate crowding in the route choice model

Real-time Travel Information: Predicting, disseminating, rerouting

Modelling Impacts of Information

Passengers' Response to Service Reliability and Travel Information

Day-to-Day Learning of Service and Information Reliability

Final distribution of credibility coeff.

33

Example: evolution of credbility coeff.

Disruptions: impact and implications for strategic planning and operational management

What is the Weakest Link?

- Main determinants of network robustness?
- Potential benefits of realtime *information* dissemination?
- How incorporate
 vulnerability into network
 planning decisions?
- Requires non-equilbrium assignment

Capturing disruption dynamics

- Static model: underestimation of disruption effects
- En-route decisions, imperfect information
- Both passengers and operators can respond to disruptions

Criticality: Relative welfare loss

Value of Real-time information: **Relative welfare gain**

Normal operations

Evaluation framework

VOC change due to disruptions

Disruption on 13-14, southbound

Where shall we increase capacity?

42

Impact indicators

TUDelft

	h=0	$h \neq 0$	VCE	
	Base network	Extended network	Value of capacity enhancement	
$\delta=0$ Undisrupted	W(0,0)	W(0, h)	VCE(h 0) = W(0,h) - W(0,0)	
$\delta \neq 0$ Disrupted	W(δ,0)	$W(\delta, h)$	$VCE(h \delta) = W(\delta, h) - W(\delta, 0)$	
PI Passenger importance	$PI(\delta 0) = W(\delta,0) - W(0,0)$	$PI(\delta h) = W(\delta, h) - W(0, h)$		
VSDM Value of strategic disruption mitigation	$VSDM(h \delta) = PI(\delta h) - PI(\delta 0)$			

Evaluation example

R – Stop-level		Disruption (D-Blue)		Value of strategic	
		No	Yes	disruption mitigation	
Capacity enhancement (C-Green)	No	w(0,0)	w(δ,0)	+7.06%	
	Yes	w(0, h)	$w(\delta, h)$	+2.77%	
Value of capacity enhancement		-24.67%	-27.69% (planned)		

Beyond a complete failure

- Most disruptions do not amount to complete breakdowns (maintenance and construction works, traffic incidents or cancelled services)
- Vulnerable systems greater negative impacts in a disproportional relation to the increase in the original capacity reduction
- Non-linear properties of network effects, traffic dynamics and route choice -> non-trivial relation?
- Systems that operate close to capacity
- Line-level; full-scan; dynamic assignment

Relation between capacity reduction and change in societal cost

- Long and small rather than short and large capacity reductions
- The same capacity increase counts more when relieving a larger capacity reduction

TUDelft

On-going research

Modelling

- > Day to day congestion equilibrium conditions
- Habit formation and limited adaptation
- Passenger groups
- Real-time dynamic control optimization

Applications

- Transfer coordination strategies
- Fleet management strategies
- Paris and Amsterdam networks

Thank you! Questions?

o.cats@tudelft.nl

odedcats.weblog.tudelft.nl

