

An Agent-Based Approach to Modelling Public Transport Dynamics

Oded Cats o.cats@tudelft.nl

Challenge the future

Delft Univer Techn₋₋₋₋

TUDelft

Outline

Concepts

- 1. PT assignment principles
- 2. Modelling PT dynamics
- 3. Agent-based simulation model

Applications

- 1. Congestion
- 2. Real-time travel information
- 3. Service disruptions
- 4. Control and operational strategies

PTA principles and approaches

Frequency-based: Assignment principles

- PT network is represented in terms of segments of lines
- Demand is assigned based on service frequencies
- Adopting concepts and solution methods from car traffic assignment

Frequency-based: Network representation

Schedule-based: Assignment principles

- PT network is represented in terms of individual vehicle trips/runs following a timetable
- Demand is assigned to specific trips, takes into account timedependent characteristics
- The concept of accumulative shortest path is not valid anymore

Schedule-based: Network representation

Schedule-based: Stop topology

Research Seminar, Tokyo University, 11-08-2015

 $\widetilde{\mathbf{T}}$ UDelft

Traditional assumptions

- Travel times is equal on all lines riding the same arc (FB)
- Passengers arrive randomly at stops
- No capacity constraints
- Perfect reliability (regularity $-$ FB; punctuality $-$ SB)
- Passengers board the first arriving vehicle
- Perfect infomration
- Homogenous travellers' population

Flow-dependent in-vehicle time

Flow-capacity ratio multiplier

- Already in the original presentation of optimal strategies
- on-board crowding
- Link travel time as a non-linear function of passenger flows
- Iterative network loading to obtain equilibrium
- BPR crowding function

BPR crowding function
\n
$$
\gamma_{\ell s}(q_a) = 1 + \alpha_{\ell}^{run} \cdot \left(\frac{q_a}{f_{\ell s} \cdot \kappa_{\ell}^{veh}}\right)^{\beta_{\ell}^{run}}, \quad a = \left(N_{\ell s}^{dep}, N_{\ell s}^{arr}\right) \in A^{run}
$$

- q_a / ($f_{\ell s} \cdot \kappa_l^{\text{veh}}$) is the saturation rate of the vehicle on the line segment;
- α_{ℓ} ^{run} and β_{ℓ} ^{run} are the BPR coefficient and exponent for running congestion.

Flow-dependent travel time

Effective frequency

- Assigning weights to waiting times
- Reliability effects and risk of denied boarding
- An infinite penalty when capacity is exceeded
-

• Reducing the nominal frequency by the BPR term\n
$$
f_{\ell s}^{\text{eff}}(q_a) = \frac{f_{\ell s}}{1 + \alpha_{\ell}^{\text{wait}} \cdot \left(\frac{q_a}{f_{\ell s} \cdot \kappa_{\ell}^{\text{veh}}}\right)^{\beta_{\ell}^{\text{wait}}}}, \quad a = \left(N_{\ell s}^{\text{dep}}, N_{\ell s^{\ell}}^{\text{arr}}\right) \in A^{\text{run}}
$$

$$
t^{\textit{wait}}_{\ell s}\left(q_a\right) = \frac{0.5}{f^{\textit{eff}}_{\ell s}\left(q_a\right)}\!\cdot\!\left(1\!+\!\sigma_{\ell s}\right)
$$

TUDelft

Does not guarantee that capacity is not exceeded!

Average VOC ratio drops from 4.77 to 1.5 Number of over-saturated line segments drops from 45 to 10

Cpeda et al. (2006)

Failure-to-board probability

- FB: a quasi-dynamic model where *the share of passengers* that exceeds the residual capacity on the respective time period is transmitted to the next period
- SB: guarantees that capacity constraints are *satisfied at the* individual vehicle level by introducing new arcs between successive vehicle trips

Seating and priorities

Main trends in developments of PT assignment models (Liu et al 2010)

• Consistently lagged behind developments in traffic modeling

- Expected and emerging developments
	- **Multi-agent** simulation models
	- **Dynamic** loading process
	- **Adaptive** user decisions
	- **Supply uncertainties**

2.

Agent-based approach to PTA

Prominent research questions

- How does the **system perform** under various conditions?
- How can APTS be deployed most **effectively** to improve serive operations?
- How to **mitigate** and manage service **disruptions**?
- How could service providers and users become more **adaptive** by taking advantage of the abundance of real-time data?
- What is the **impact** of APTS measures?

Agent-based TAM

- Represents individual vehicles and travellers
- Emerging solution based on agents interaction with each other throughout the simulation
- En-route decisions
- Day-to-day learning as proxy to equilbrium conditions
- Integration with traffic simulation models

Implementation: BusMezzo Transit Assignment and Operations Simulation Model

• A framework for analyzing transit performance under various operational conditions and APTS

- **BusMezzo**: integrated into Mezzo, a mesoscopic traffic simulation model
- Agent-based
- Operations-oriented
- Sources of uncertainty
- Adaptive decision making
- System level analysis

A modelling framework for Analyzing Public Transport Operations

Network representation

Public Transport Dynamics

Joint car and PT; mode-specifics Dwell times Fleet; vehicle scheduling Crowding and capacity

Operations planning Control and management strategies Adaptive route choice Real-time information

Transit performance

Passengers decisions

Demand representation

-
- Non-compensatory rule-based choice-set generation process
- En-route decisions

TUDelft

- Assess the attributes of each avilable path $v_{i,n} = \beta_{i,n} X_{i,n}$
- Calculate the *joint utility* of the bundled paths

$$
v_{I,n}=ln\sum_{i\in I}e^{v_{i,n}}
$$

- Path: outcome of successive decisions
- Preserve passenger integrity from one day to the other

Applications **Applications**

Reliability and Control

Real-time Information

Network Resilience

Application: Increased capacity

The dynamics of reliability & congestion

- Route choice
- Service reliability
- Demand variation

How can the value of reduced congestion be quantified?

Evaluation of congestion effects

Appraisal of Increased Capacity

• Crowding factor in static/dynamic model: +3%/+60%

 $\widetilde{\mathbf{T}}$ UDelft

- Value of increased capacity: underestimated in static models
- Overestimation in BusMezzo: currently incorporate crowding in the route choice model

Real-time Travel Information: Predicting, disseminating, rerouting

Research Seminar, Tokyo University, 11-08-2015 and Cats seminar, Tokyo University, 11-08-2015

Modelling Impacts of Information

Research Seminar, Tokyo University, 11-08-2015 and Nov 2015

Passengers' Response to Service Reliability and Travel Information

Research Seminar, Tokyo University, 11-08-2015 and Seminar, Tokyo University, 11-08-2015

Day-to-Day Learning of Service and Information Reliability

Final distribution of credibility coeff. Example: evolution of credbility coeff.

Disruptions: impact and implications for strategic planning and operational management

What is the Weakest Link?

- *•Main determinants of network robustness?*
- *• Potential benefits of realtime information dissemination?*
- *•How incorporate vulnerability into network planning decisions?*
- Requires **non-equilbrium assignment**

Capturing disruption dynamics

- Static model: underestimation of disruption effects
- En-route decisions, imperfect information
- Both passengers and operators can respond to disruptions

Criticality: Relative welfare loss

Value of Real-time information: Relative welfare gain

Normal operations Normal operations

 t UDelft

Evaluation framework

VOC change due to disruptions

Disruption on 10-11, southbound Disruption on 13-14, southbound

Where shall we increase capacity?

Impact indicators

 $\widetilde{\mathbf{T}}$ UDelft

Evaluation example

Beyond a complete failure

- Most disruptions do not amount to complete breakdowns (maintenance and construction works, traffic incidents or cancelled services)
- Vulnerable systems greater negative impacts in a disproportional relation to the increase in the original capacity reduction
- Non-linear properties of network Δw_i Vulnerable effects, traffic dynamics and route choice -> non-trivial relation?
- Systems that operate close to capacity
- Line-level; full-scan; dynamic assignment

Delft

Relation between capacity reduction and change in societal cost

- Long and small rather than short and large capacity reductions
- The same capacity increase counts more when relieving a larger capacity reduction

 $\widetilde{\mathbf{T}}$ UDelft

On-going research

• Modelling

- \triangleright Day to day congestion equilibrium conditions
- \triangleright Habit formation and limited adaptation
- \triangleright Passenger groups
- \triangleright Real-time dynamic control optimization

• Applications

- \triangleright Transfer coordination strategies
- \triangleright Fleet management strategies
- \triangleright Paris and Amsterdam networks

Thank you! Questions?

o.cats@tudelft.nl

odedcats.weblog.tudelft.nl

Research Seminar, Tokyo University, 11-08-2015 and MIT, 20 Nov 2015