Innovative ITS Approaches for Control of Large-Scale Urban Networks

Mehdi Keyvan-Ekbatani

International BinN Research Seminar University of Tokyo, Tokyo, Japan 11.08.2015

Challenge the future

Introduction

Despite continuous efforts in the field of traffic control, traffic congestion in urban road networks persists and extends around the globe.
 Congestion() (road capacity (supply) / traffic demand)

 \Box Road capacity (\nearrow) \Rightarrow traffic management and signal control

□ Practicable and efficient signal control under saturated traffic conditions remains a challenge.

"No current generally available tool is adequate for optimizing [signal] timing in congested conditions" (FHWA, 2008).

Introduction

Gating Control??

Holding traffic back (via prolonged red phases at traffic signals) at the perimeter or upstream of the zone to be protected from over-saturation

□ Gating :

- Practical tool against over-saturation
- Usually employed in an ad hoc way
- Based on engineering judgment and manual fine-tuning
- May lead to insufficient or unnecessarily strong gating actions

Network or Macroscopic Fundamental Diagram (NFD or MFD)

Verification by real data: Geroliminis & Daganzo, 2008

 Under-saturated; minimize delays!
 Saturated: maximize capacity!
 Oversaturated: queue management, gating!
 Blocked: call the police or walk home!

Combining Gating With NFD

- □ According to NFD, if N grows beyond certain limits ⇒ PN exit flow (_)
- Via gating, PN can be protected from link queue spillovers and gridlocks

Operational NFD

- Operational NFD: based on measurements/ estimates, rather than exact knowledge,
- at links $\mathbb{M} \subseteq \mathbb{Z}$, where $z \in \mathbb{M}$ (complete NFD) or $\mathbb{M} = \mathbb{Z}$ (reduced NFD)
- y-axis: Total Travel Distance (TTD)

$$TTD(k) = \sum_{z \in \mathbb{M}} \frac{T \cdot q_z(k) \cdot L_z}{T} = \sum_{z \in \mathbb{M}} q_z(k) \cdot L_z$$

(where k = 1, 2, ... are signal cycles)

x-axis: Total Time Spent (TTS)

$$TTS(k) = \sum_{z \in \mathbb{M}} \frac{T \cdot \hat{N}_z(k)}{T} = \sum_{z \in \mathbb{M}} \hat{N}_z(k) = \hat{N}(k)$$

$$\hat{N}_{z}(k) = L_{z} \cdot \frac{\mu_{z}}{100\lambda} \cdot o_{z}(k-1)$$

Typical Feedback Loop

TUDelft

SISO system is a simple control system with one input and one output
 Actuator is the device that can influence the controlled variable of the process (In traffic; actuator: traffic light, control variable: *TTS*)
 Sensor: measures the control variable (in Traffic Control: detectors)

$$\xrightarrow{TTS \text{ or } N_{\text{cr}}} \text{Controller} \xrightarrow{q_{\text{g}}} \text{Process} \xrightarrow{TTS \text{ or } N}$$

$$\xrightarrow{\text{real-time measurement}}$$

Feedback Gating Traffic Control Scheme

Time-Delayed Feedback gating

• If gating applied at the border of PN $\Rightarrow \tau = 0$ & $q_{\rm g} = q_{\rm in}$

Time-delayed nonlinear first-order dynamic system

University of Tokyo, Tokyo, Japan

TUDelft

Time-Delayed Feedback gating

• The model can be linearized around an optimal steady state that is within the maximum throughput region of NFD

Linearized System:
$$\frac{d}{dt}(\Delta TTS) = \left(\Delta q_{g} + \Delta q_{d} - \frac{\Gamma \overline{F'}}{BL} \Delta TTS\right) \cdot A + \varepsilon$$

• The continuous-time state equation of the PN may be directly translated in discrete-time

$$\Delta TTS(k+1) = \mu \cdot \Delta TTS(k) + \zeta \cdot \Delta q_{in}(k-m) + \gamma \cdot \Delta d(k)$$

Where $\Delta TTS = TTS - T\hat{T}S$, $\Delta q_g = q_g - \overline{q}_g$, $m \triangleq time - delay$

Parameters μ , ζ , m can be obtained from using time-series of (q_g , *TTS*)-measurements via model identification (e.g. least-square method) around the critical *TTS*-range.

Controller

• A proportional-integral-type (PI) feedback controller is suitable

$$q_{g}(k) = q_{g}(k-1) - K_{P}\left[TTS(k) - TTS(k-1)\right] + K_{I}\left[T\hat{T}S - TTS(k)\right]$$

- Flow, constrained by pre-specified minimum and maximum $K_{\rm P}$ and $K_{\rm I}$ gain values
- Flow splitting if multiple gating links: Various policies, queue management (this work, based on link saturation flow)
- Conversion of flows to gating signals (appropriate modification of fixed plans)

Controller Gain Values

The z-transform function of the process and controller: $\begin{pmatrix} & K_P \end{pmatrix}$

$$P(z) = \frac{\zeta}{z^{m}(z-\mu)} \quad C(z) = \frac{z \cdot (K_{\rm P} + K_{\rm I}) - K_{\rm P}}{z-1} = K' \cdot \left(\frac{z - \frac{K_{\rm P}}{K'}}{z-1}\right) \qquad K' = K_{\rm P} + K_{\rm I}$$

By closing the loop with C (controller) and P (process):

$$F_{c} = \frac{C(z) \cdot P(z)}{1 + C(z) \cdot P(z)} = \frac{K' \cdot \left(\frac{z - \frac{K_{P}}{K'}}{z - 1}\right) \cdot \left(\frac{\zeta}{z^{m} \cdot (z - \mu)}\right)}{1 + K' \cdot \left(\frac{z - \frac{K_{P}}{K'}}{z - 1}\right) \cdot \left(\frac{\zeta}{z^{m} \cdot (z - \mu)}\right)} \qquad \begin{array}{ll} \text{Using control laws,}\\ \text{simplified to:}\\ & \downarrow \\ F_{c} = \frac{K' \zeta}{z^{m} (z - 1) + K' \zeta}\end{array}$$

Applying the design rules of (Papageorgiou and Messmer, 1985)

Controller Gain Values

• ready design of a PI regulator

т	K _P	K
0	μ/ζ	(1- <i>μ</i>)/ζ
1	μ/(3 ζ)	(1- μ)/(3 ζ)
2	μ/(5 ζ)	(1- μ)/(5 ζ)
3	μ/(6ζ)	(1- μ)/(6 ζ)
>3	μ/(2 <i>mζ</i>)	(1- μ)/(2 <i>mζ</i>)

Chania (Greece) Urban Network

• Microscopic simulator AIMSUN applied.

TUDelft

- Realistic O-D demands and dynamic traffic assignment (DTA) based routing (4h simulation)
- In the middle of every link inside PN, a loop detector has been installed

Simulation Result: NFD

■ Maximum TTD values in the diagram occurs in a TTS region of 600 to 800 veh·h per h

Control Results (90s Control Step)

Gating $T\hat{T}S = 750, K_p = 10, K_I = 3, m = 3, \mu = 0.7692, \zeta = 0.0128$ TTS non-gated TTS (veh.h/h) 2000 2000 TTS (veh.h/h) TTS gated 1500 1500 set value (a) (d) 1000 1000 500 500 2 time (h) time (h) ordered flow lower bound How (veh/h) 10000 2000 0 12000 0 (15000 Hom (veh/h) 5000 0 upper bound actual flow (b) (e) actual flow switch on --- switch off 2 2 time (h) time (h) [TTD (veh.km/h) [TTD (veh.km/h) 6000 6000 TTD non-gated TTD gated (f) (c) MM 4000 4000 2000 2000 2 2 time (h) time (h)

NFD after Gating Control

Time-Delayed Gating with Higher Control Step (450s)

Gating $T\hat{T}S = 750, K_p = 65, K_I = 20, m = 3, \mu = 0.760, \zeta = 0.011$

Network-Wide Performance Indexes

15 replications per control scenario Performance indexes (whole network, 4h)

- Average vehicle delay per km
- Mean speed

Reduced NFD

Measurements:

• Four groups of measurements collected from:

- each and every link inside PN (100% of all)
- signal-controlled links inside PN (35% of all)
- proportions of controlled links in PN:
 - 10% of all
 - 5% of all
- Selection of links: critical links where congestion starts spreading

Measurement Location

Reduced NFD

• When TTS(100%) in its critical range, TTS(x%) is in its own critical range **T**UDelft

Control Results

TUDelft

Challenge the future 24

Critical Links

5% measurements:4 early-congested4 late-congested

maximum-*TTDTTS*-range of [50-90]

5%: 8 late-congested

Multiple Concentric Gating

- After the first core of congestion formed, red perimeter activated
- If small proves unsuccessful to mitigate the congestion, big activated additionally

Test-bed: San Francisco

- Large-scale urban network ⇒ heterogeneous spatial distribution of congestion ⇒ different regions may not reach the critical accumulation (NFD) simultaneously,
- Red border: first protected network (PN1)
- Pink Border: second protected network (PN2), OVERAL NETWORK
- measurements collected every 60s (shortest cycle of the traffic lights inside the whole network)
- 5-hour simulation

NFDs

Results: Multiple Concentric

Improvements: No gating (NG); Single Controller (SC); Two Controller (TC)

Combining Gating and Traffic Responsive Strategies

Two adaptive traffic control strategies:

- Modified SCATS
- Volume-based traffic responsive control strategies

Gating or Perimeter Control

Control Scenarios

- Scenario 1: (no-gating) the traffic lights in the PN are controlled applying fix-time control signal plan.
- *Scenario 2*: (no-gating) "volume-based" traffic responsive control strategy is implemented to control all the traffic lights within PN.
- Scenario 3: (no-gating) adaptive traffic control strategy "modified SCATS" is used for controlling the signalized junctions within PN.
- *Scenario 4*: Gating at the perimeter and fix-time control inside PN.
- *Scenario 5*: Gating at the border and "volume-based" for the rest of the traffic lights in the PN.

• *Scenario 6*: Gating at the boundary and "modified SCATS" within PN.

NFDs for Different Control Scenarios

Density Variation in Different Scenarios

Control Results for Six Scenarios

Control Results for Six Scenarios

ŤUDelft

Conclusion and Future Work

✓A robust feedback controller, by considering timedelay on the system is designed.

- ✓It is shown that the feedback gating works properly with much longer time-steps.
- ✓ Overall performance of the network improved.

✓On-going work: comparison and combining with traffic-responsive signal control strategies.

✓ Future work:

✓Queue management at gated links

✓Field test

Thanks for listening!

Email: m.ekbatani@tudelft.nl

