Smart transit systems for even smarter travellers

Jan-Dirk Schmöcker schmoecker@trans.kuciv.kyoto-u.ac.jp

Overview

• Part 1: Single line, bus bunching

- Part 2a: Transit Route choice as game
- Part 2b: Notes on extension to all choices from O to D

• Conclusions/ current work

Bus bunching

Bus bunching

Likely passenger stop arrival patterns with RTI

Influence of boarding rate on bunching

If the boarding rate is low, the service can be severely disrupted even without exogenous delays

Influence of boarding rate on bunching

Conclusion:

• RTI "disturbs" passenger arrival patterns

• This means the system can be much easier perturbed - Even without exogenous delay

• Holding strategies become even more important

p.s. on control strategies

- All holding strategies introduce delays
- One control strategy is "the unfriendly bus driver": *Go to the back bus, I am leaving.*

Part 2: Route choice in transit networks

- Choosing a hyperpath consists of two steps
	- *Defining a set of paths*
	- *Defining the selection criteria* of a specific *path*

Spiess and Florian "Optimal strategies"

- Spiess and Florian (1989) proposed that passengers board the first line among a set of attractive lines at a boarding node *i.*
- Finding the optimal path set can be presented as a linear program where the objective is to find the strategy that minimises the *expected* waiting time.

$$
p_a(A_i^+) = \frac{f_a}{\sum_{a \in A_i^+} f_a} \qquad \qquad w(A_i^+) = \frac{\alpha}{\sum_{a \in A_i^+} f_a}
$$

Games and route choice

- "Hyperpaths" have also been applied in other contexts
- Risk-averse assignment leads to the creation of a set of paths in order to minimise the maximum travel cost
- Route choice as a game against single or multiple "demons" have been introduced to find worst case scenarios.
	- Bell (2000): Router vs. demon to find critical links
	- Cassir and Bell (2000) : Extension to multiple travellers
	- Cassir et al (2003): Tree spoiler to investigate reliability of specific Ods
	- Szeto et al (2007): Extension to multiple (independent) demons

Proposition: S&F = game

- The risk-averse traveller, who *fears* a maximum delay of $d_a = 1/f_a$ on any link should use the S &F path split probabilities, independent of the travel time on any downstream link *c^a* , and include all links that are not dominated by any other link.
- Note the difference in interpretation:
	- S&F : 1/*f^a* $1/f_a$ is the expected waiting time
	- Here : 1/*f^a* $1/f_a$ is the maximum link delay

Proof (1)

• The risk averse traveller fears that a line might be delayed by up to *d^a , this can be described as a game with following pay-off matrix:*

• *..leading to following optimisation problem:* $\sum_{a \in A_i^+}^{\infty} u_a p_a + q_a p_a d_a$

Proof (2)

• The travellers is hence to choose a (mixed) strategy **p** that minimises his feared cost of travel *λⁱ .*

Min *λⁱ* so that

$$
p_1(u_1 + d_1) + p_2u_2 + \dots + p_ku_k = g_1 \le \lambda_i
$$

\n
$$
p_1u_1 + p_2(u_2 + d_2) + \dots + p_ku_k = g_2 \le \lambda_i
$$

\n
$$
p_1u_1 + \dots + \dots + \dots = \dots \le \lambda_i
$$

\n
$$
p_1u_1 + p_2u_2 + \dots + p_k(u_k + d_k) = g_k \le \lambda_i
$$

 $p_1 + p_2 + \dots + p_k = 1$

 $p_i > 0 \ \forall i = 1,..., k$

• Following the expected value principle at the saddle point the costs of all used strategies will be equal.

Proof of proposition 1 (3)

• …hence solving the set of equations wlog for p_1 leads to *p^a* = *p¹* (*d1* /*d^a*) *a=*2,…,*k*

and

$$
p_1 + p_1 (d_1/d_2) + p_1 (d_1/d_3) + ... + p_1 (d_1/d_k) = 1
$$

• Solving for p_1 leads to: qed $p_1 =$ 1 d_1 1 *da* \sum _{*a*=1,..,*k*}

Further properties of this zero-sum game

• With p_{a} determined it follows for the expected game value:

$$
g = \left(u_1 + \frac{1}{f_1}\right) \frac{f_1}{\sum_{i} f_i} + u_2 \frac{f_2}{\sum_{i} f_i} + \dots + s_n \frac{f_n}{\sum_{i} f_i} = \frac{1 + \sum_{i} f_i u_i}{\sum_{i} f_i}
$$

- which is also equivalent to the S&F solution.
- In the same way as for the path split probabilities the attack probabilities q_a can be found for the Nash equilibrium solution. $\sum_{i} f_i$
 $38F$ solution.

split

lities q_a can

im solution.

Equivalence of S&F linear program with "Multiple local demon game"

• Spiess and Florian showed that following LP determines the optimal hyperpath (with assumptions as before)

With "Multiple local demon game"\nSpiess and Florian showed that following LP determines the optimal hyperpath (with assumptions as before)

\n
$$
\overline{Min_{p,w} \sum_{a \in A} c_a p_a + \sum_{i \in I} w_i}
$$
\nSubject to

\n
$$
\sum_{a \in A_i^+} p_a - \sum_{a \in A_i^-} p_a = g_i
$$
\n
$$
p_a d_a \leq w_i
$$
\n
$$
p_a \geq 0
$$
\nThe corresponding Lagrangian function for this LP is:

\n
$$
L(\mathbf{p}, \mathbf{w}, \lambda, \mathbf{q}) = \sum_{a \in A_i^-} c_a p_a + \sum_{i \in I} w_i - \sum_{i \in I} \sum_{a \in A_i^+} q_a (w_i - p_a d_a) + \sum_{i \in I} \lambda_i (g_i - \sum_{a \in A_i^+} p_a + \sum_{a \in A_i^-} p_a)
$$
\n18

• The corresponding Lagrangian function for this LP is:

$$
p_a \ge 0
$$

The corresponding Lagrangian function for this LP is:

$$
L(\mathbf{p}, \mathbf{w}, \lambda, \mathbf{q}) = \sum_{a \in A} c_a p_a + \sum_{i \in I} w_i - \sum_{i \in I} \sum_{a \in A_i^+} q_a (w_i - p_a d_a) + \sum_{i \in I} \lambda_i (g_i - \sum_{a \in A_i^+} p_a + \sum_{a \in A_i^-} p_a)
$$

Equivalence of S&F linear program with "Multiple local demon game" (2) ultiple local demon gar

L(p, w,
$$
\lambda
$$
, q)= $\sum_{a \in A} c_a p_a + \sum_{i \in I} w_i - \sum_{i \in I} \sum_{a \in A_i^+} q_a (w_i - p_a d_a) + \sum_{i \in I} \lambda_i (g_i - \sum_{a \in A_i^+} p_a + \sum_{a \in A_i^-} p_a)$

- The primary \leftrightarrow dual variables are $p \leftrightarrow \lambda$ and $w \leftrightarrow q$
	- Ahuja et al (1993) show that the dual variable of link choice probabilities **p** can be interpreted as node potential (as in Proposition 1)
	- Interpretation of **q** *…to follow*
- L(**p**,**w**,**λ**,**q**) is
	- Minimised with regards to **p** and **w**
	- Maxmised with regards to **q** and **λ**
	- Subject to non-negativity conditions on **p** and **q**

Equivalence of S&F linear program with "Multiple local demon game" (3)

-
-

\n- The interpretation of **q** is clarified by the dual problem
\n- $$
L(\mathbf{p}, \mathbf{w}, \lambda, \mathbf{q})
$$
 can be transformed into\n
$$
L(\mathbf{p}, \mathbf{w}, \lambda, \mathbf{q}) = \sum_{i \in I} \lambda_i g_i - \sum_{a = (i, j) \in A} p_a((\lambda_i - \lambda_j) - c_a - q_a d_a)
$$
\n
$$
-\sum_{i \in I} w_i (\sum_{a \in A_i^+} q_a - 1)
$$

• Meaning that the dual problem can be formulated as

$$
Max \sum_{i \in I} \lambda_i g_i
$$

Subject to $(\lambda_i - \lambda_j - q_a d_a) \le c_a$

$$
\sum_{a \in A_i^+} q_a - 1 = 0
$$

Maximise subject to
 $q_a \ge 0$

Demon Problem: Maximise node costs subject to $q_i = 1$ **at**

Equivalence of S&F linear program with "Multiple local demon game" (4)

• Further, L(**p**,**w**,**λ**,**q**) can be transformed into

• This MaxMin problem gives the mixed strategy Nash equilibrium of a zero sum, non-cooperative game between a network user endeavouring to minimise his travel cost and node specific demons aiming to penalise the traveller by imposing delays. The traveller by imposing delays.

Comparison to single demon game

- As pointed out the single demon game has been of special interest in the network reliability literature.
- The S&F / Multiple local demon game can be transformed into the single demon game by a change in the demon constrained: transformed into the single demon g
the demon constrained:
 $\frac{Max_{\mathbf{q}}Min_{\mathbf{p}}\sum_{a\in A}(c_{a}p_{a}+q_{a}d_{a}p_{a})}{\sum_{\mathbf{q}}$

transformed into the single demon game by a change in
\nthe demon constrained:
\n
$$
Max_{\mathbf{q}}Min_{\mathbf{p}}\sum_{a\in A} (c_{a}p_{a} + q_{a}d_{a}p_{a})
$$
\nsubject to\n
$$
\sum_{a\in A_{i}^{+}} p_{a} - \sum_{a\in A_{i}^{-}} p_{a} = g_{i}
$$
\n
$$
1 = \sum_{a\in A} q_{a}
$$
\n
$$
p_{a} \geq 0
$$
\n
$$
q_{a} \geq 0
$$
\n
$$
q_{a} \geq 0
$$
\n
$$
d \in A
$$

Observation (can be proven)

- **Only the single demon game necessarily includes the shortest path**
	- In the multiple local demon game the traveller might avoid nodes with potentially large delays altogether.
	- In the single demon game the total resource of the demon is limited, meaning that the traveller should include (at least with a small probability) every potentially shortest path.

Numerical Example

• Shortest undelayed path L2(A-B) - $>$ L3(B-C-D) only included in single demon game

Numerical Example (2)

- Only **q** changes in MLDG
- L1 now also included in SDG

Numerical Example (3)

- Only single route in MLDG
- Multiple routes in SDG (as 24min > travel time on shortest path)

Conclusions

- The S&F hyperpath concept can be interpreted as a "multiple local demon game" (MLDG).
	- It is the route choice of an intelligent traveller fearing that "something can go wrong at each decision point".
	- The dual variable **q** is an indicator for the link importance
- A smart transit system with RTI and line coordination can reduce the tavellers' game to a single demon game.

Extension: Effects of information on trip stages

Note on Hyperpath vs Strategy

- Through reliable, "dynamic" information on service departures, route choice decision points move closer to passenger departure time: At decision point the hyperpath collapses into a single path.
- Therefore for the passenger the hyperpath might not necessarily become more complex, but only "from a modelling perspective".

Overall Conclusions

- "Smart transit", i.e. providing good information allows the traveller to benefit by less need to be risk-averse and by having wider options
- This might in turn help the system
- But there is also a danger that the traveller "outsmarts" the system
	- Headway perturbations
	- Focus on the shortest route
- …requiring possibly even more information and network management

Current work connected to the topic…

- Fare structures: Increasingly complex to manage and attract demand
	- Zones vs distance based and flat fares
	- Special discounts: OD pairs, peak times, loyalty rewards (per day, per month..), Shopping points
- Bus bunching and stop layout: in how far can "intelligent design" make a system robust against delays

Thank you

schmoecker@trans.kuciv.kyoto-u.ac.jp

References and acknowledgements to my co-authors

- Fonzone, A., Schmöcker, J.-D. and Liu, R. (2015). **A model of bus bunching under reliability-based passenger arrival patterns.** Transportation Research C. Available from http://dx.doi.org/10.1016/j.trc.2015.05.020.
- Schmöcker, J.-D., Sun, W., Liu, R. and Fonzone, A. (2015). **Bus Bunching Along a Corridor Served by Two Lines.** Presented at the 6th International Symposium on Transportation Network Reliability (INSTR), August 2015, Nara, Japan.
- Fonzone, A. and Schmöcker, J.-D. (2014). **Effects of Transit Real-Time Information Usage Strategies.** Transportation Research Records, 2417, 121-129.
- Schmöcker, J.-D. (2010). **On Decision Principles for Routing Strategies Under Various Types of Risks.** In: Security and Environmental Sustainability of Multimodal Transport. Edited by: Bell, M.G.H., Hosseinloo, S.H. and Kanturska, U.; Springer, Dordrecht, The Netherlands.
- Schmöcker, J.-D., Bell, M.G.H., Kurauchi, F. and Shimamto, H. (2009). **A Game Theoretic Approach to the Determination of Hyperpaths in Transportation Networks.** Selected Proceedings of the 18th International Symposium on Transportation and Traffic Theory (ISTTT). Hong Kong, July 2009.