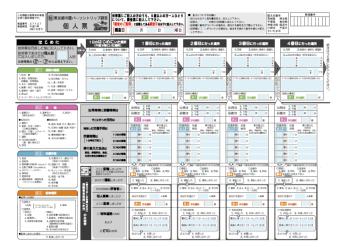
Automated and Adaptive Activity-Travel Survey using Online Interaction with Travelers

Toru SEO

Postdoctoral Researcher, Asakura Lab., Tokyo Institute of Technology

Joint work with Dr. Kusakabe and Prof. Asakura

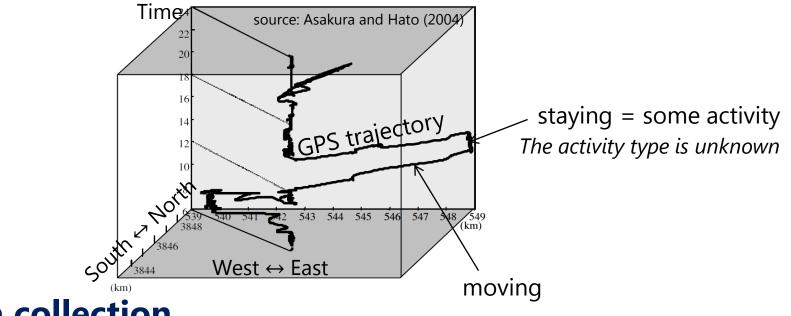
The 7th International BinN Seminar @ UTokyo 20160925


Travel behavior survey

 Travel behavior data is essential for activity/travel behavior modeling

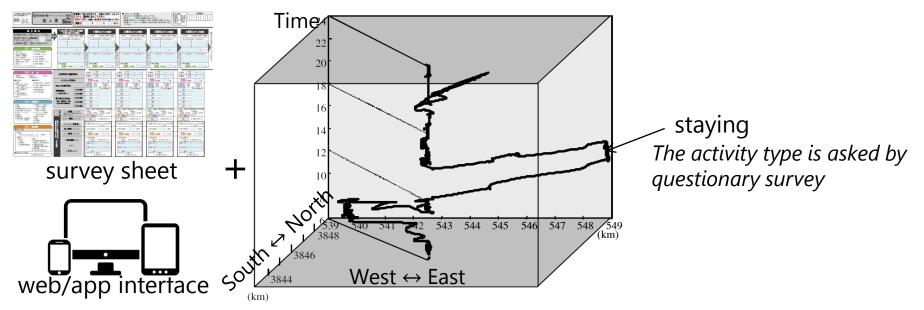
traveler id	trip id	origin	destination	mode	departure time	•••
1	1	home	office	train	8:30	
1	2	office	shop	walk	17:00	
2	1	home	restaurant	car	11:30	
•						

- Actual activity/travel data is often collected by conducting a survey
 - realistic compared to stated preference (virtual) data


Conventional survey methods

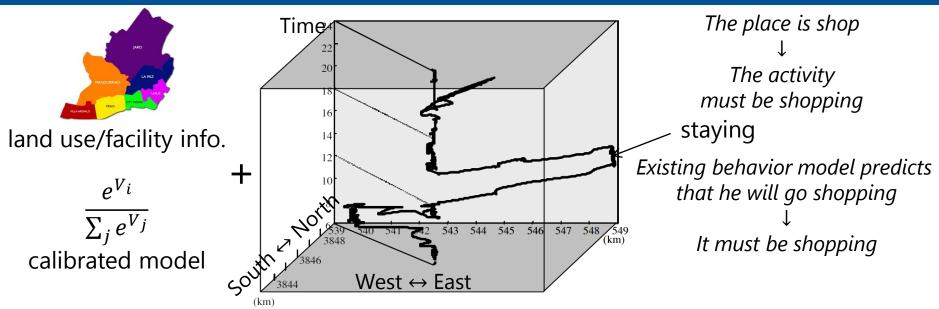
Questionary survey

- Travel data is collected by paper- or web-based questionary
- Limitations:
 - burden for survey participants: where did you go? when? how? why? with whom? etc.
 - inaccurate due to incomplete memory
 - →Long-term, large-scale, and accurate data collection is difficult (panel attrition, fatigue)


Conventional survey methods

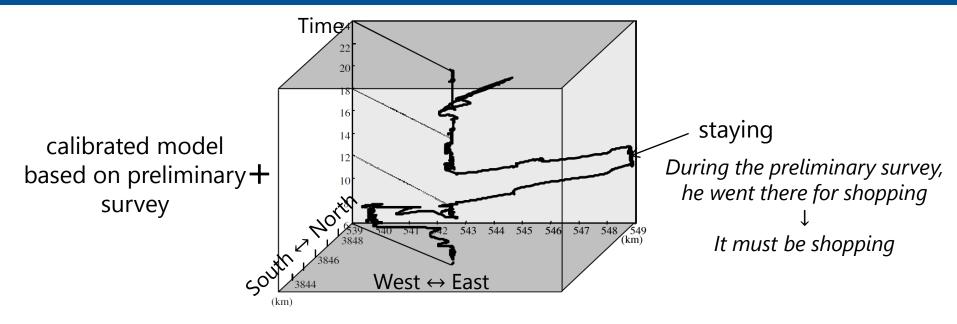
GPS data collection

- accurate spatiotemporal data
- Activity type (trip purpose) is missing


Conventional survey methods

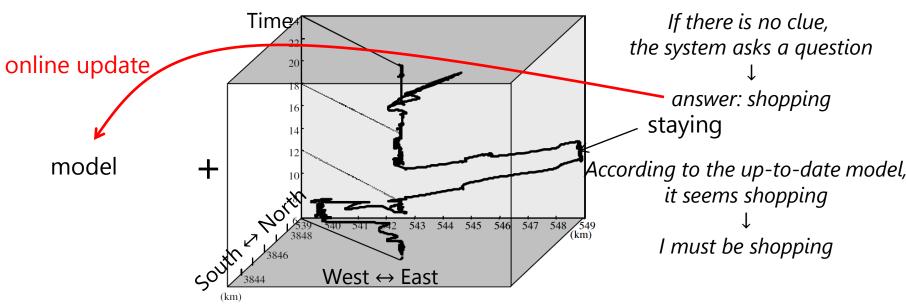
GPS data collection + questionary survey

- accurate spatiotemporal data
- relatively accurate activity data
 - GPS log can help memory recalling
- burden for participants
 - Extensive manual input is still mandatory


Existing advanced survey methods

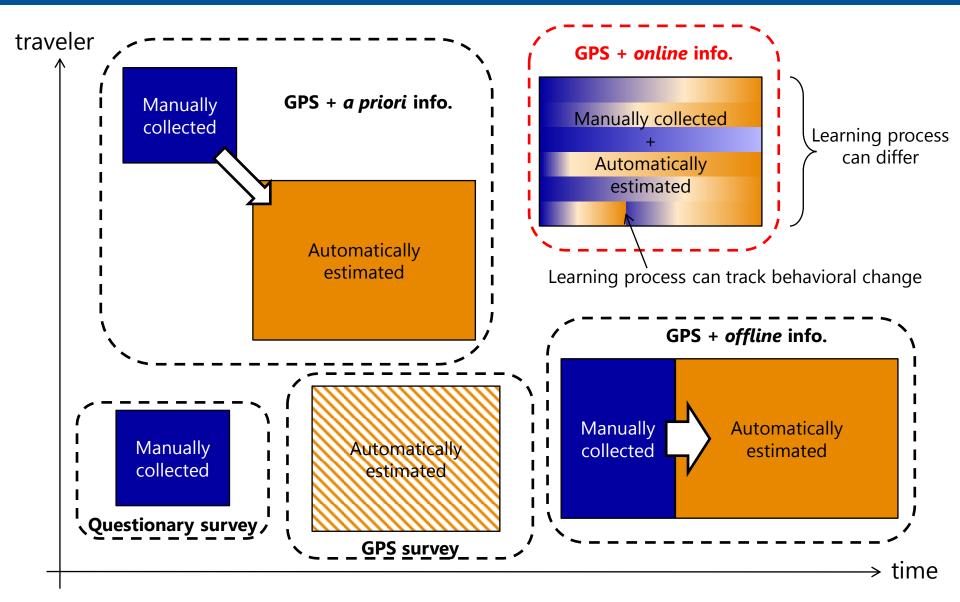
GPS data collection + imputation based on *a priori* info.

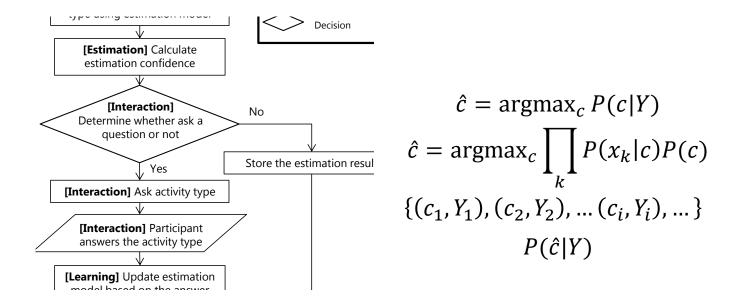
- Automatic imputation based on a priori information (eg: Wolf et al., 2001; Shen and Stopher, 2013; Gong et al., 2013)
 - land use
 - behavior model calibrated by using existing data
- Collected data may have several limitation
 - Traveler heterogeneity is ignored
 - The data is not suitable for behavior modeling purposes


Existing advanced survey methods

GPS data collection + imputation based on *offline* **info.** (Kim, Ben-Akiva, et al., 2014, 2015)

- Automatic imputation based on preliminary survey
 - Data is collected by preliminary survey for the same participants
 - Traveler heterogeneity can be captured

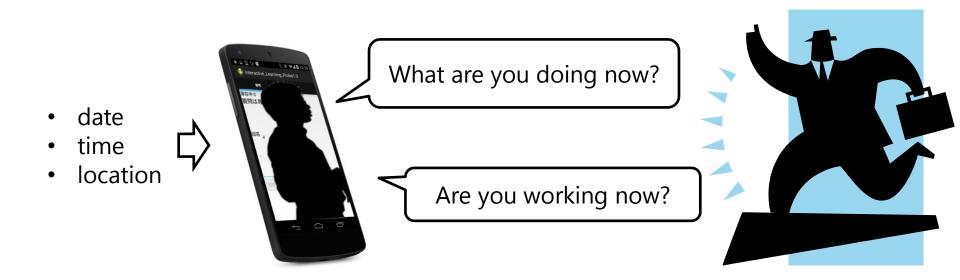

Proposed survey method



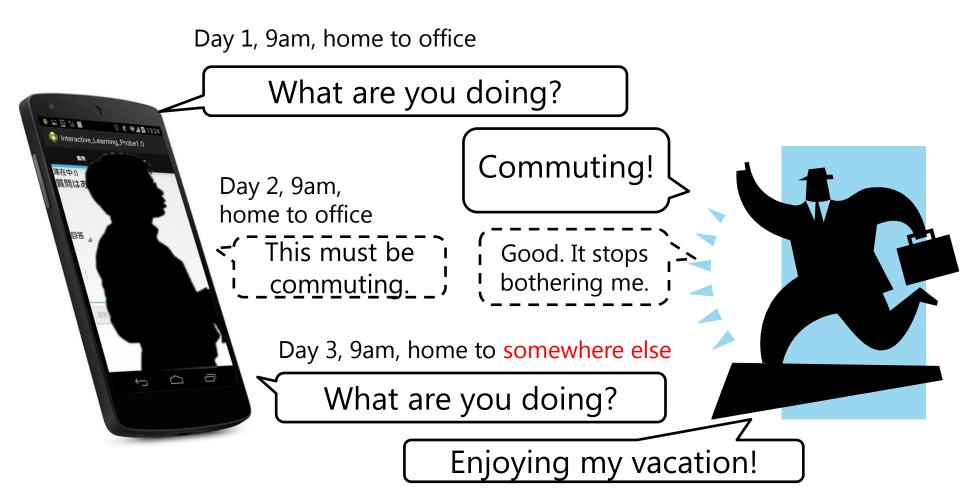
GPS data collection + imputation based on online info. (Kusakabe et al., 2015; Seo et al., 2016)

- Automatic imputation based on data collected from previous online interaction
 - online interaction: the survey system will ask a question automatically and dynamically
- Possible features of the proposed method:
 - Reducing frequency of questions
 - Keeping quality of data high
 - Considering traveler heterogeneity
 - Adaptive tracking of behavioral change
 - Automatic process (No need of manual control by survey administrator)

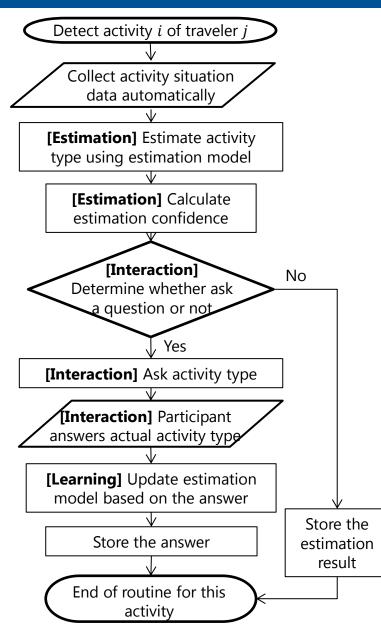
Illustration of methods



Methodology

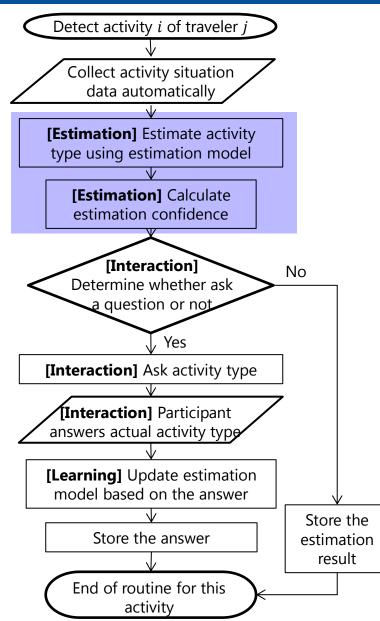

Concept

- The proposed method estimates activity type
- The system always measures activity situation using standard sensors
 date, time, location
- The system detects occurrence of an activity
 - move-or-stay identification
- The system can ask a question about activity to the survey participants



Concept

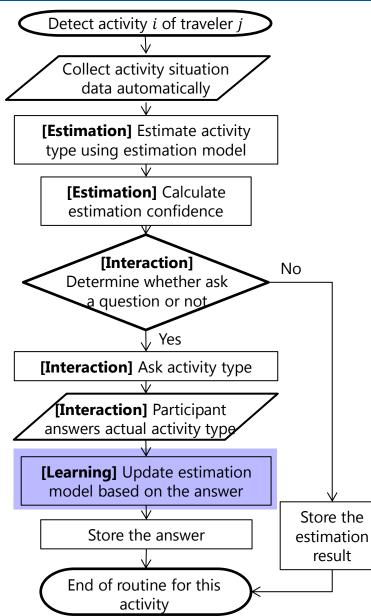
- The system learns a traveler-specific behavior pattern
- The system runs automatically



Overview

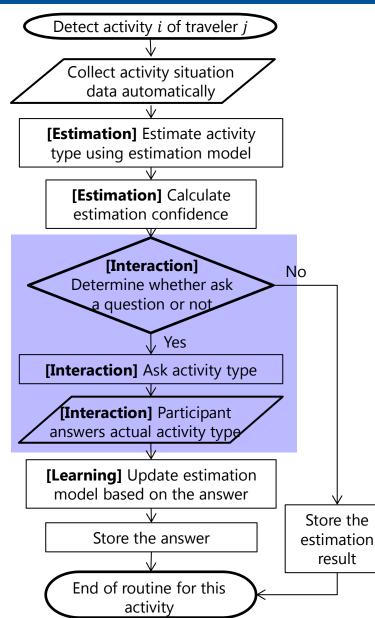
- Activity detection phase
 - Detects the survey participant staying somewhere to do unknown activity
 - out of scope of this study
- Estimation phase
 - Estimates the activity type using an traveler-specific estimation model
 - Interaction phase
 - Will ask activity type to the survey participant, if the estimation is not confident
 - Will not ask the question, if the estimation is confident
 - Learning phase
 - Updates the estimation model based on the participant's answer

Estimation phase



- Activity type estimation problem:

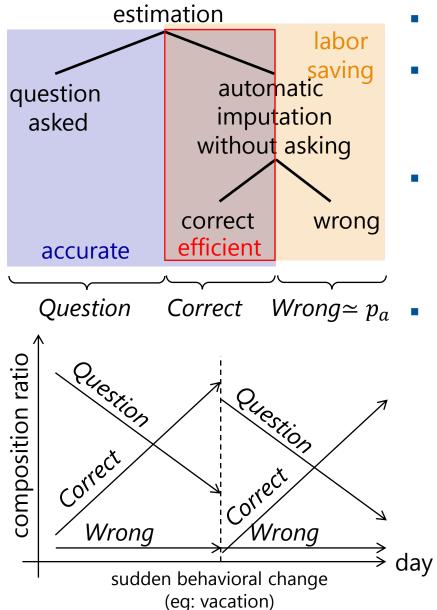
 ĉ = argmax_c P(c|Y)


 where
 - activity type: c
 eg: work, leisure
 - activity situation: $Y = (x_1, x_2, ...)$ eg: time: x_1 , location: x_2
- Naive Bayes assumption: $\hat{c} = \operatorname{argmax}_{c} \prod_{k} P(x_{k}|c)P(c)$
- P(x_k|c) and P(c) are calculated based on historical data
 learning

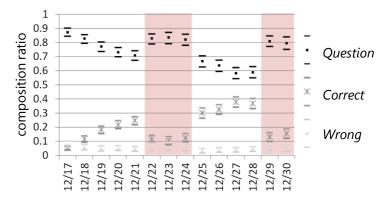
Learning phase

- Historical data: H_{traveler,time} = {(c₁, Y₁), (c₂, Y₂), ... (c_i, Y_i), ... } - traveler-specific - dynamically updated
- P(x_k|c) and P(c) can be easily calculated based on the historical data
- How to collect the historical data?
 - \rightarrow online interaction between the system and participant

Interaction phase



- Interaction:
 - If estimation confidence is high enough, the estimation result will be stored as a survey result
 - Otherwise, the system will ask the actual activity to the survey participant
 - The answer is stored to historical data for learning, as well as a survey result
- Estimation confidence:


 $P(\hat{c}|Y)$

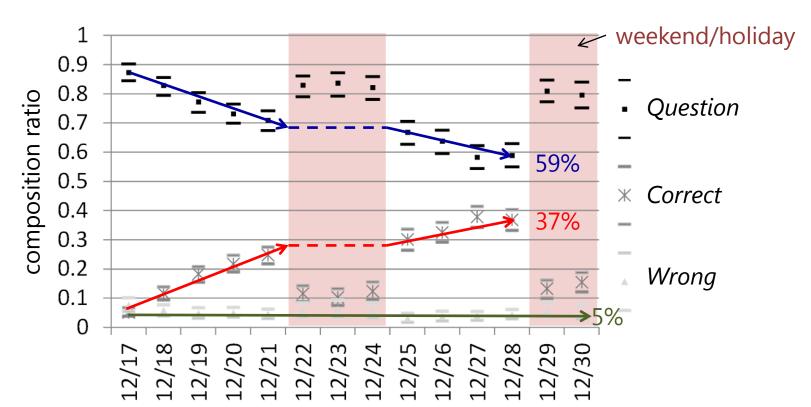
- probability of performing activity \hat{c} under situation Y
- easily calculated based on historical data
- The system will ask question with certain probability p_q so that expected error rate will be equal to a given acceptable error rate p_a
 - p_a is given by the survey planner eg: 5%

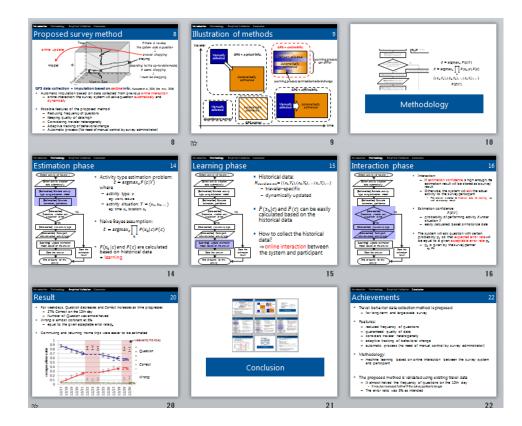
Summary

- The survey admin will be happy if Wrong is small
- The survey participants will be happy if Question is small
 - It makes long-term survey easier
- The acceptable error rate p_a is given by admin
 - quality control
 - trade-off: $Wrong \downarrow \Leftrightarrow Question \uparrow$
- Estimation model keeps being updated during the entire survey period, for each travelers (=online)
 - At the initial stage, the estimation model is dumb
 - Question will be frequent
 - As the survey progresses, the estimation model will become accurate
 - Question will decrease; Correct will increase
 - Long-term behavioral change can be tracked
 - Traveler heterogeneity can be captured

2007/11/7	142	1000	0.666667	0.7916
2007/11/8	146	1000	0.641026	
2007/11/9	131	1000	0.625	0
2007/11/10	154	1000	0.818182	0.8260
2007/11/11	97	1000	0.75	0
2007/12/17	315	1000	0.785714	0.8928
2007/12/18	361	1000	0.833333	0.8571
2007/12/19	356	1000	0.818182	0.838
2007/12/20	369	1000	0.787879	8.0
2007/12/21	368	1000	0.75	0.718
2007/12/22	252	1000	0.837838	0.8333
2007/12/23	228	1000	0 251 252	0.8149

Empirical Validation


Data


- The proposed method is validated by using existing travel survey data
 - collected by GPS + questionary survey
- Validation procedure
 - 1. Suppose that the survey data is true (ground truth)
 - 2. Emulate the proposed method
 - 3. Compare the estimation result with the ground truth

Date	Dec 17-30, 2007 • duration: 2 weeks	
Location	Matsuyama city, Japan	
Number of participants	92	
Number of trips	4120 • 3.5 trips/person/day	
Activity type (trip purpose)	commuting, returning home, business, shopping, food/leisure, others	
Activity situation	weekday dummy, arrival time, location	

Result

- For weekdays, *Question* decreases and *Correct* increases as time progresses
 - 37% *Correct* on the 12th day
 - Number of *Question* was almost halved
- *Wrong* is almost constant at 5%
 - equal to the given acceptable error rate p_a
- Commuting and returning home trips were easier to be estimated

Conclusion

Achievements

- Travel behavior data collection method is proposed
 - for long-term and large-scale survey
- Features:
 - reduced frequency of questions
 - guaranteed quality of data
 - considers traveler heterogeneity
 - adaptive tracking of behavioral change
 - automatic process (no need of manual control by survey administrator)
- Methodology:
 - machine learning based on online interaction between the survey system and participant
- The proposed method is validated using existing travel data
 - It almost halved the frequency of questions on the 12th day
 - It may be reduced further if the survey period is longer
 - The error ratio was 5% as intended

References

- Kitamura, R.: Panel analysis in transportation planning: An overview, *Transportation Research Part A: General*, Vol. 24, No. 6, pp. 401-415, 1990
- Axhausen, K. W., Löchl, M., Schlich, R., Buhl, T. and Widmer, P.: Fatigue in long-duration travel diaries, *Transportation*, Vol. 34, No. 2, pp. 143-160, 2007
- Asakura, Y. and Hato, E.: Tracking survey for individual travel behaviour using mobile communication instruments, *Transportation Research Part C: Emerging Technologies*, Vol. 12, No. 3-4, pp. 273-291, 2004
- Hato, E.: Development of behavioral context addressable loggers in the shell for travel-activity analysis, *Transportation Research Part C: Emerging Technologies*, Vol. 18, No. 1, pp. 55-67, 2010
- Cottrill, C. D., Pereira, F. C., Zhao, F., Dias, I. F., Lim, H. B., Ben-Akiva, M. E. and Zegras, P. C.: Future Mobility Survey, *Transportation Research Record: Journal of the Transportation Research Board*, Vol. 2354, No. 1, pp. 59-67, 2013
- Wolf, J., Guensler, R. and Bachman, W.: Elimination of the travel diary: Experiment to derive trip purpose from global positioning system travel data, *Transportation Research Record: Journal of the Transportation Research Board*, No. 1768, pp. 125-134, 2001
- Shen, L. and Stopher, P. R.: A process for trip purpose imputation from Global Positioning System data, *Transportation Research Part C: Emerging Technologies*, Vol. 36, pp. 261-267, 2013
- Gong, L., Yamamoto, T. and Morikawa, T.: Comparison of Activity Type Identification from Mobile Phone GPS Data Using Various Machine Learning Methods, *Asian Transport Studies*, Vol. 4, No. 1, pp. 114-128, 2016
- Kim, Y., Pereira, F. C., Zhao, F., Ghorpade, A., Zegras, P. C. and Ben-Akiva, M.: Activity Recognition for a Smartphone Based Travel Survey Based on Cross-User History Data, 2014 22nd International Conference on Pattern Recognition, pp. 432-437, 2014
- Kim, Y., Pereira, F. C., Zhao, F., Ghorpade, A., Zegras, P. C. and Ben-Akiva, M.: Activity recognition for a smartphone and web based travel survey, *arXiv preprint arXiv:1502.03634*, 2015
- Kusakabe, T., Seo, T., Goto, H. and Asakura, Y.: Interactive Online Machine Learning Approach for Activity-Travel Survey, *Proceedings of the 14th International Conference on Travel Behaviour Research*, 2015
- Seo, T., Kusakabe, T. and Asakura, Y: Formulation and Evaluation of Framework for Probe Person Survey using Online Machine Learning based on Interaction with Survey Participant, *Proceedings of Infrastructure Planning*, Vol. 54, 2016 (in Japanese)