行動モデル夏の学校 資料

金沢大学 中山晶一朗

当日は4章を中心にお話します.特に4章をよく読んでください. 確率・統計の内容(分散,共分散,相関係数,チェビシェフの不等式,大数の法則,中心極 限定理,最尤推定法)についてあらかじめ復習しておいてください.

ネットワーク上でのパラメータ推定の特性についての一考察

中山晶一朗1

¹正会員 博(工) 金沢大学環境デザイン学系 (〒920-1192 金沢市角間町) E-mail: snakayama@t.kanazawa-u.ac.jp

本研究では,最尤推定法を用いてリンク間の交通量の相関を考慮した交通ネットワーク均衡モデルのパラメータ推定 法について,その最尤推定量の特性,推定されたパラメータの信頼性の評価,どのモデルが最良なのかを統計的に判 断するモデル選択などについて考察する.

Key Words: parameter estimation, network equilibrium model, maximum likelihood method

1. はじめに

交通ネットワークの計画・分析の際,研究・実用上,交通 ネットワーク均衡モデルは重要な役割を果たしている.

交通ネットワーク均衡としては、従来からワードロップ均 衡¹⁾や確率的利用者均衡^{2),3)}が広く知られている.確率的 利用者均衡はランダム効用理論に基づいた経路選択を用 いた交通ネットワーク均衡である.ただし、確率的利用者 均衡では、旅行時間を含む変数から構成される経路効用 は確率的であるが、各道路利用者は確率的には経路を選 択しておらず、配分される交通量や旅行時間は確定的で ある.したがって、確率的利用者均衡という名称の「確率 的利用者」という用語は誤解を生みやすいため、本研究 では、それをロジット型利用者均衡(Logit User Equilibrium; LUE)もしくはプロビット型利用者均衡(Probit User Equilibrium; PUE)と呼ぶことにする.

ロジット型利用者均衡は、既に述べたようにロジットモ デルによる経路選択に基づいた均衡であるが、そのロジ ットモデルでは、経路効用は最も簡単な場合でも $-\theta t + \varepsilon$ であり、パラメータ θ を推定する必要がある.なお、t は経路の旅行時間であり、 ε は確率項である.ロジット 型利用者均衡では、このパラメータにどのような値を用 いるべきかが問題となることが少なくない.また、 $-\theta t + \varepsilon$ よりも複雑な効用関数を定義することも可能で、その時 は更にパラメータ推定が重要になる.そして、ロジット型 利用者均衡に限らず、ネットワーク均衡モデルでは、旅 行時間関数のパラメータ推定もたびたび問題となってい る.本来、旅行時間関数のパラメータは旅行時間と交通 量の観測から推定すべきであるが、それは難しいことも 多い.さらに、従来から多数の研究がなされている OD 交通量推定などもネットワーク均衡モデル上でのパラメ ータ推定である.このように交通ネットワーク均衡モデル でパラメータを推定することは非常に重要であることが分 かる.また、高速道路等の料金を考える場合、時間価値 などを用いることも可能であるが、時間価値パラメータを 均衡モデル上で推定することも可能であり、その推定量 は均衡モデルと一貫性を持ったパラメータとなり、均衡 モデル上で推定する方が望ましい場合も多いと考えられ る.

ネットワーク均衡モデルのパラメータ推定では、データ 入手の容易さの観点から,リンク交通量の利用が便利であ ると考えられる. 従来から均衡モデルにより算出される計 算交通量と実際のネットワークの交通量である実交通量の 二乗誤差が最小となるようにパラメータが推定されてきて いる 4).しかし、このような最小二乗法では、各リンクの交 通量は独立であることが前提条件となる.しかし,実際のリ ンク交通量はリンク間で独立ではなく、近接するリンクでは、 その相関はかなり高い.したがって、最小二乗法によって パラメータの値を単に計算することは可能であるが,リンク 交通量の相関等の観点(確率・統計学の観点)から理論上 問題であり, 推定したパラメータにバイアスが含まれる恐 れもある. そこで, 本研究では, 最尤推定法を用いてリンク 間の交通量の相関を考慮した交通ネットワーク均衡モデ ルのパラメータ推定法を提案する.このような統計学的な 手法を用いることによって、これまで膨大に蓄積されてい る統計学の様々な理論を交通ネットワーク均衡モデルに 適用することが可能となる. 例えば, 推定されたパラメータ の信頼性の評価、どのモデルが最良なのかを統計的に判 断するモデル選択などが可能となる.

これまでリンク交通量データ(のみ)を用いて最尤推定

法によりパラメータを推定する研究がいくつか行われている. Bobillard⁵), Fisk⁶, Daganzo⁷は最尤推定法により前述のロジットモデルのパラメータ θ を求めている. Hazelton⁸) は最尤推定法により OD 交通量を求める方法を提案している. これらの研究では, uncongested なネットワーク(リンク旅行時間を事実上定数とするネットワーク)を対象としている. Anas と Kim⁹は旅行時間が交通量の関数である場合(congested なネットワークの場合)に最尤推定法によってパラメータ θ を求めている. しかし, 彼らの研究では, パラメータ値のバイアスの比較に焦点が当てられ, モデル自体に関しては詳細に述べてはいない.

近年,二段階最適化問題や均衡制約付数理問題 (MPEC)の研究が進んでいる.これらの枠組みの中で, congested ネットワークでの均衡下での最尤推定が可能で ある.本研究では、リンク交通量の相関を取り扱う関係上, 経路交通量が必要となるため、ロジットモデルによる経路 選択を含むネットワーク均衡を用いる.ロジット型利用者均 衡モデルを用いた二段階最適化問題を取り扱った研究と して, Chen と Alfa¹⁰, Davis¹¹⁾, Yang ら¹²⁾, Lo と Chan¹³, Ying と Yang¹⁴⁾などの研究がある.なお、これらのうち、Lo と Chan¹³⁾の研究は、(本研究も用いる)最尤推定法を用い た研究である.彼らは、リンク交通量(とOD 交通量データ) のサンプルから OD 交通量を推定している.これらの研究 では、最適化目的関数の一次微分などを導出するととも に、Dial アルゴリズムもしくはその修正方法を用いた計算 方法を提案している.

本研究では、リンク交通量データ(のみ)を用いて、その 相関を考慮した最尤推定法を提案する. 上で述べたロジ ット型利用者均衡での二段階最適化の研究 10,11,14)では, 交通量を確定的に扱っており, リンク交通量の確率分布等 を扱うことはできない. リンク交通量の同時確率(密度)関 数(尤度関数)の導出のため、本研究では、著者らが提案 した配分交通量及び旅行時間が確率的である確率ネット ワーク均衡 15)をロジットモデルによる経路選択に基づく均 衡に拡張し、その拡張した均衡モデルで算出される交通 量の生起確率をもとに最尤法によりパラメータ推定を行う. このように確率的な交通量を持つ確率ネットワーク均衡を 用いることによって、上で述べた既存研究 13)では問題とな っている, OD 交通量・経路交通量・リンク交通量の各種交 通量の確率分布の整合性を保つことができる. そして, パ ラメータの真値を推定するための条件等に関しても考察 する.

2. ロジット型確率ネットワーク均衡

(1) 需要と交通量

リンク $a \quad O(\mathcal{Y})$ 交通量を $x_a \ (a \in A)$, その確率変

数を X_a とする. OD ペア $i (\in I)$ の経路 $j (\in J_i)$ の経 路交通量を yii とし, その確率変数を Yii とする. つまり, x_a 及び y_{ii} はそれぞれ確率変数 X_a 及び Y_{ii} の実現 値である.経路交通量とリンク交通量は,リンク・経路接 続変数 $\delta_{a,ij}$ を用いて, $X_a = \sum_{i \in I} \sum_{j \in J_i} \delta_{a,ij} Y_{ij}$ 及び $x_a =$ $\sum_{i \in I} \sum_{i \in J_i} \delta_{a,ii} y_{ii}$ が成立している. なお, $\delta_{a,ii}$ は OD ペア iの経路 jの経路にリンク a が含まれていれば 1 であ り,含まれていなければ0 である.これらのベクトル表示 $X = \Delta Y, x = \Delta y$ を必要に応じて用いる. ただし, X は X_aを要素に持つリンク交通量の確率変数ベクトル,Y は Yii を要素に持つ経路交通量の確率変数ベクトル (Y₁₁, Y₁₂..., Y₂₁,...)^T であり, x 及び y はそれぞれ X 及び Y の実現値ベクトルである. Δ は $\delta_{a,ii}$ を要素に 持つリンク・経路接続行列,T は転置である.本稿では, 断りがない限り、ベクトルは列ベクトルとし、基本的に英 大文字は確率変数,ブロック体の英文字はベクトルもし くは行列を表すことにする.

起終点交通量(OD 交通量)は、その起点(O)周辺に 存在する人々がトリップを行うのか否かにより確率的に 発生すると仮定する. それらの人々がある一つの終点 (D) へ向かうトリップを行う確率は小さいと仮定すると、 OD ペア *i* の(OD) 交通量はポアソン分布に従う. その 平均を λ_i とする. また、リンク *a* の平均リンク交通量を μ_a (= E[X_a]), OD ペア *i* の経路 *j* の平均経路交通量 を m_{ij} (= E[Y_{ij}]) とする. ここで、E は平均(期待値)の演 算である. この時、 $\lambda_i = \sum_{j \in J_i} m_{ij}$ が成立する.

OD ペア i の交通量の平均 λ_i は,何らかの方法に より調査されたOD 交通量データの値を用いることができ るものとする. OD 交通量がポアソン分布以外の分布に 従う場合を考えることも可能である¹⁶⁾. しかし,その場合 OD 交通量の分散や標準偏差に関するデータも必要と なり,適用が難しくなるため,本研究では,ポアソン分布 を仮定することとする. ポアソン分布は平均と分散が同じ 確率分布であり,上述のようにその平均は既存の OD 交 通量データから与えることが可能である.

発生した OD 交通量はそれぞれ独立に確率 \mathbf{p}_i の通 りに確率的に経路を選択すると仮定する. ここで, \mathbf{p}_i は OD ペア *i* の道路利用者の経路選択確率で, その要素 を p_{ij} とする. なお, 経路選択確率は同じ OD ペア内の 道路利用者では共通とする. OD ペア *i* の経路交通量 の平均 m_{ij} は $\lambda_i p_{ij}$ と等しくなる. すなわち, $\mathbf{m}_i = \lambda_i \mathbf{p}_i$ である. ここで, \mathbf{m}_i は OD ペア *i* の平均経路交通量の ベクトルである. 以上の OD 交通量がポアソン分布に従 い, 発生した交通量が独立に確率的に経路を選択する という設定は Clark と Watling¹⁷⁾と同様であり, この場合, OD ペア *i* の経路交通量は以下の示すように(独立な) ポアソン分布に従う.

$$f_{\mathbf{Y}_{i}}(\mathbf{y}_{i}) = f_{\mathbf{Y}_{i}}^{mn}(\mathbf{y}_{i}|q_{i})f_{\mathcal{Q}_{i}}^{po}(q_{i})$$
(1a)

$$= \frac{q_i!}{\prod_{i \in J_i} y_{ij}!} \prod_{j \in J_i} \left(\frac{m_{ij}}{\lambda_i}\right)^{y_{ij}} \frac{e^{-\lambda_i} \lambda_i^{q_i}}{q_i!}$$
(1b)

$$=e^{-\sum_{j}m_{ij}}\frac{m_{i1}^{y_{i1}}\cdots m_{i|J_i|}^{y_{i|J_i|}}}{y_{i1}!y_{i2}!\cdots y_{i|J_i!}!}$$
(1c)

$$=\prod_{j\in J_i} f_{Y_{ij}}^{po}(y_{ij})$$
(1d)

ここで、 $f_{i}^{mn}(\cdot)$ は多項分布の確率関数、 $f_{i}^{po}(\cdot)$ はポアソ ン分布の確率関数、 Q_i は OD ペア *i* の OD 交通量の 確率変数、 q_i はその実現値、 Y_i は OD ペア *i* の経路 交通量の確率変数のベクトル、 $|J_i|$ は集合 J_i の要素数 (OD ペア *i* の経路数)である.また、既に述べたように、 $\lambda_i = \sum_{j \in J_i} m_{ij}$ であり、それを用いている.

以上は、平均が λ_i のポアソン分布に従って生起した OD 交通量がそれぞれ独立に確率 \mathbf{p}_i に従って確率的 に経路を選択すると、経路交通量は平均が $\lambda_i p_{ij}$ の独 立なポアソン分布に従うということを意味している.なお、 OD 交通量がポアソン分布に従うと仮定しているため、経 路交通量はポアソン分布に従うものの、経路選択に関係 する p_{ij} は必ずしも十分に小さいと仮定する必要はない. これも OD 交通量がポアソン分布という特殊な分布に仮 定することの利点の一つである. Clark と Watling¹⁷⁾はこ の場合の均衡の定式化を行っていないため、次項でそ れを行う.また、著者ら¹⁵⁾は経路交通量が独立なポアソ ン分布に従う場合の確率的均衡のモデル化を行ってお り、本稿では、それを経路選択確率 \mathbf{p}_i がロジットモデ ルに従う場合に拡張するものである.

既に述べたように, $X_a = \sum_{i \in I} \sum_{j \in J_i} \delta_{a,ij} Y_{ij}$ (**X** = **ΔY**) で ある. そして, 独立なポアソン変数(ポアソン分布に従う 確率変数)の和はポアソン変数であるため, リンク交通量 はポアソン分布に従う. つまり, リンク *a* の交通量は平 均 μ_a (= $\sum_{i \in I} \sum_{j \in J_i} \delta_{a,ij} m_{ij} = \sum_{i \in I} \lambda_i \sum_{j \in J_i} \delta_{a,ij} p_{ij}$)のポアソ ン分布 Po[μ_a] に従う. ただし, リンク間には共通に流れ る経路交通量が存在するため, 一般にリンク交通量はリ ンク間で独立ではない.

式 (1) で述べたように, 経路交通量はそれぞれ独立 なポアソン分布 Po[m_{ij}] に従う. 経路交通量が十分に 大きい場合, すなわち, m_{ij} が十分に大きい場合, ポア ソン分布 Po[m_{ij}] の平均と分散はともに m_{ij} であるため, 中心極限定理により, それは平均と分散がともに m_{ij} で ある正規分布 N[m_{ij} , m_{ij}] に従うと近似することができる. この時, リンク交通量 X は以下の多変量正規分布に従 う¹⁸.

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n |\mathbf{\Sigma}|}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$
(2)

ただし、μ は平均リンク交通量ベクトルで,その要素は μ_a , Σ はリンク交通量の分散共分散行列, Σ^{-1} は Σ の逆 行列, |**Σ**| は**Σ** の行列式, n (= |A|) はリンクの総数である. また, 平均経路交通量のベクトル m (その要素は m_{ii}) を用いると、 $\Sigma = \Delta diag(\mathbf{m}) \Delta^{T}$ である¹⁸⁾. ただし、 $diag(\mathbf{m})$ は m の各成分を対角成分に持つ対角行列である. つ まり, diag(m) は Y の分散共分散行列であり, 各経路 交通量は独立であるため、それは対角行列となる.ここ で、 $\mu = \Delta m$ であるため、 $f_X(\mathbf{x}) \bowtie f_X(\mathbf{x}, \mathbf{m})$ と考えること もできる.なお,このようなリンク交通量の確率密度関数 を定義するためには, Σ が 0 でないことが必要である. 例えば、本来ならば一つのリンクで記述すべきものを 2 つの連続隣接のリンクで表現した場合を考える. その 2 つのリンクは全く同じリンク交通量及び分布となる.この ように他のリンク交通量(の確率変数)によって一意に表 現できるリンク(の確率変数)を除去しなければ、 f_x(x)を 定義できないことに注意が必要である.

(2) 定式化

本研究のモデルでは、上述のように、リンク旅行時間 の分散共分散行列が得られるため,それを経路旅行時 間の分散共分散行列に変換し,経路選択をプロビットモ デルで行うことが可能である.その場合,経路選択確率 の計算には、モンテカルロ法が用いられることが多いよう である. また, 数値積分を用いたり, 近似法である Clark 法¹⁹⁾や Mendel-Elton 法^{20),21)}などを用いることが出来る. しかし, モンテカルロ法, Clark 法, Mendel-Elton 法は計 算誤差が小さくなく,数値積分を用いると,計算時間が 非常に大きいという問題点を持つ.また,プロビットモデ ルでは,経路・リンクの一次独立が成立しない場合,経 路選択確率の計算が困難になる場合もあるという問題も 発生する.本稿では,論点を最尤法に絞り,より簡素な 説明を行いたいために,実用的に利用可能なロジットモ デルによる経路選択を仮定する.なお,プロビットモデル による経路選択は重要であり、かつ、より適切であるため、 今後,別の機会で発表したい.

各道路利用者は次式のロジットモデルに従い,経路 選択確率 p_iを決定していると仮定する.

$$p_{ij} = \frac{\exp(-\theta \,\overline{c}_{ij})}{\sum_{j' \in J_i} \exp(-\theta \,\overline{c}_{ij'})}$$
(3)

ここで, \bar{c}_{ij} は OD ペア *i* の経路 *j* の平均旅行時間, θ は正のパラメータである.

確率的ネットワーク均衡モデルを定式化するのに際し、 式 (3) を含んだ関数 $\mathbf{g} = (g_{11},..,g_{21},...)^T$ を考えよう. 関 数 \mathbf{g} の要素 g_{ij} を以下のように定義する.

$$g_{ij}(\mathbf{m}) = \lambda_i \frac{\exp(-\theta \,\overline{c}_{ij}(\mathbf{m}))}{\sum_{j' \in J_i} \exp(-\theta \,\overline{c}_{ij'}(\mathbf{m}))}$$
(4)

確率ネットワーク均衡は,関数(写像) g に関する以下の不動点問題として定式化できる.

$$\mathbf{m} = \mathbf{g}(\mathbf{m}) \tag{5}$$

なお、平均リンク交通量ベクトル μ を用いて、 $\mu = \Delta g'(\mu)$ とリンクに関する定式化も可能である. ただし、g'は 入力がリンク交通量の場合のgである.

3. 最尤推定法

(1) 尤度関数

リンク交通量の観測が行われ、観測リンク交通量ベク トルを $\tilde{\mathbf{x}}$ とする. 観測されたリンクの集合を \tilde{A} とする.

観測リンク交通量は式 (2) の分布の周辺確率として 以下の確率密度関数を持つ多変量正規分布に従う.

$$f_{\widetilde{\mathbf{X}}}(\widetilde{\mathbf{x}}) = \frac{1}{\sqrt{(2\pi)^{\widetilde{n}} |\widetilde{\mathbf{\Sigma}}|}} \exp\left\{-\frac{1}{2} (\widetilde{\mathbf{x}} - \widetilde{\boldsymbol{\mu}})^{\mathrm{T}} \widetilde{\mathbf{\Sigma}}^{-1} (\widetilde{\mathbf{x}} - \widetilde{\boldsymbol{\mu}})\right\}$$
(6)

ここで、 \tilde{X} は観測交通量の確率変数ベクトル、 $\tilde{\mu}$ は観 測交通量の平均値ベクトル、 $\tilde{\Sigma}$ は観測交通量の分散共 分散行列、 \tilde{n} は観測リンクの総数である. $\tilde{\mu} \geq \tilde{\Sigma}$ は、 式 (2) で用いられている $\mu \geq \Sigma$ について、観測して いるリンクに関する要素を抜き出して構成することができ る.

リンク交通量の実現値, つまり, リンク交通量の観測 値 x が与えられた場合, 以下の対数尤度関数 *L*(**θ** x) を定義することができる.

$$L(\mathbf{\theta}|\widetilde{\mathbf{x}}) = \ln f_{\widetilde{\mathbf{X}}}(\widetilde{\mathbf{x}}) = \sum_{a \in \widetilde{A}} \ln f_{X_a}(\mathbf{x}_a | \mathbf{x}_{-a})$$
(7)

ただし, $f_{X_a}(\mathbf{x}_a | \mathbf{x}_{-a})$ はリンクa以外のリンク交通量が与 えられた場合のリンクaの交通量の確率密度関数であ る.

また,複数回それらのリンクを観測している場合,第 r回目の観測値を $\tilde{\mathbf{x}}_r$ とする($r \in \mathbf{R}$).異なった回の観測 値が独立である場合,尤度関数は以下のように定義でき る.

$$L(\mathbf{\theta}|\mathbf{\tilde{x}}_{r}; \forall r \in R) = \sum_{r \in R} \ln f_{\mathbf{\tilde{x}}_{r}}(\mathbf{\tilde{x}}_{r})$$
(8)

ここで、 $f_{\tilde{\mathbf{x}}_r}(\tilde{\mathbf{x}}_r)$ は r回目の観測交通量が生起する確 率である.なお、異なった回の観測値が独立ではない場 合は、観測回間での関係を考慮した尤度関数を個別に 設定することが必要となる.以降では、断りがない限り、 $\tilde{\mathbf{x}}$ は観測回数は一回のみのデータとする.

そして, 尤度関数を l(ln l=L) で表すことにする.

(2) 定式化

以下に示すように前章で述べた確率ネットワーク均衡 が下位問題となった均衡制約付数理問題(MPEC)とし て,最尤推定法による θ を求めるパラメータ推定を定式 化することができる.

$$\max_{\boldsymbol{\theta}} L(\boldsymbol{\theta} | \widetilde{\mathbf{x}}, \mathbf{m})$$
(9)

s.t.
$$\mathbf{m} = \mathbf{g}(\mathbf{m})$$
 (10)

ここで, θ はパラメータベクトルで, θ_k (k ∈ K) から構成さ れる.

4. 最尤推定量の性質

通常の最尤推定法では,独立同一分布(I.I.D.)が仮 定されている.この場合,最尤推定量は3つの優れた性 質(一致性,漸近有効性,漸近正規性)を持っている²²⁾. よって,最尤法は,サンプルサイズが十分に大きければ, パラメータの真値を推定することができる.したがって, 十分な数の独立なリンク交通量データ(観測回数が十分 に多い,独立なデータ)があれば,パラメータの真値を推 定することができると考えられる.

車両感知器等から多量のリンク交通量データを入手 できることも多い.しかし、日々の交通量には相関がある と考えられ、その場合、それらのデータを基に独立性に 留意した多回数のリンク交通量データを作成しなければ ならない.また、一般道路等では、車両感知器データの 入手は容易ではない場合も多く、その場合、センサスデ ータなどを用いざるを得ない.そこで、観測した交通量 データ観測回数が1回のみの場合について考察する. 以下に示すように、観測リンク数が十分に多く、リンク間 の相関が限られたものである場合、最尤推定量は真値 に一致する.

有限の平均,分散を持つ リンク距離も有限で最大値をη

(1) リンク間相関の平均的距離減衰性

ー般にリンク交通量は互いに独立ではなく,観測 回数が 1 回のみの場合の観測リンク交通量は I.I.D. なデータではない. このように独立でない場合の最 尤推定法について, $\lim_{|n-n'|\to\infty} Cov[X_n, X_n'] = 0$ が満た される確率変数列 $\{X_n\}$ の場合が研究されている ^{22),23),24)}. これは時系列データのようにデータの順序 が一次元ではっきりとしている場合は容易に適用可 能である. なお, Cov は共分散を意味する. 中山・ 高山²⁶⁾では, リンク相関の局所性(局所従属性)を 仮定した. 局所従属性はある一定の距離以上離れた リンク間の交通量は独立であるとしている. この局 所従属性の仮定の下では最尤推定法によるパラメー タ(最尤推定量) は一致性があることを証明した.

しかしながら、交通ネットワークでは、主要幹線上 などでは距離がかなり長くてもある程度相関を持っ ていると想定されることも多いと考えられる.本研 究では、局所従属性の仮定を緩和した、リンク間相 関の「平均的距離減衰性」を提案する.

平均的距離減衰性は、平均的にはリンク間の相関 は距離が長くなるに従い、小さくなることを意味す るものとする.平均的であるため、常に相関が距離 減衰しなければならない訳ではなく、平均的に成立 すればよい.よって、ある主要路線上のリンク間の 相関は減衰しないということも許容される.

ー致性はデータサンプルが無限にある極限状況で 最尤推定量が真値に一致することである.ネットワ ーク上での一致性を検討するにあたり,無限に広が る平面上に交通ネットワークが広がっているとする. そして,単位面積当たりのリンク数をリンク密度と 呼ぶことにする.リンク密度には上限(最大値)と 下限(最小値)があるとし,最大値を *p*_{min}とする.リンクの位置は,リンク中点(リンクの 始点と終点から同距離のリンク上の点)で表すとす る.

全リンクの分散の最大値以上の有限値をvとする. つまり,

$$v \ge \max\left[\sigma_a^{2} \mid \forall a \in A\right] \tag{11}$$

ここで、 σ_a はリンク a の標準偏差、A はリンク集合 である。リンク a と a'の相関係数を $r_{aa'}$ 、その共分散 を $\sigma_{aa'}$ とすると、 $r_{aa'} = \sigma_{aa'}/(\sigma_a \sigma_{a'})$ である。また、 $-1 \le r_{aa'} \le 1$ である。本研究での平均的距離減衰性は

$$\frac{1}{n_{\rm cov}} \sum_{a\neq a'} \sigma_{aa'} \le \frac{1}{n_{\rm cov}} \sum_{a\neq a'} \frac{\nu}{d_{aa'}}$$
(12)

が成り立つこととする. ただし, $d_{aa'}$ はリンク $a \ge a'$ の距離, λ は正の定数, n_{cov} は共分散のペア数で基本的には 2n(n-1), nは対象ネットワーク内のリンクの総数である. リンク間距離は, リンクの中点(リン

クの始点と終点から同距離のリンク上の点)の間の 距離とする.期待値を取る演算子 E を用いると,

$$\mathbf{E}[\sigma_{aa'}] \le \frac{\nu}{d_{aa'}} \tag{13}$$

と表現できる.相関係数(の平均)は

$$\mathbf{E}_{n}[r_{aa'}] = \frac{\mathbf{E}_{n}[\sigma_{aa'}]}{\sigma_{a}\sigma_{a'}} \leq \frac{1}{d_{aa'}}^{\lambda} \frac{\nu}{\sigma_{a}\sigma_{a'}}$$
(14)

となり,相関係数の平均も距離とともに減衰する. ここで注意が必要であるのは,上式の右辺は1より も大きいこともあり,距離がそれほど離れていない 範囲内であれば,相関係数(の平均)は距離に応じ て減衰する必要はない.さらに,上式は平均的に成 り立つものであり,リンク間距離が十分に離れてい たとしても全てのリンク間相関係数が距離に応じて 減衰することを求めていない.繰り返しになるが、vや標準偏差である $\sigma_a や \sigma_a$ は有限値であるため, $d_{aa'}$ が十分に大きいと,平均的に相関係数は減衰する. 例えば幹線ネットワークでは長距離走行車両が多く 相関は減衰しないものの,距離が離れた2つの細街 路では両方を走る車は少なく,距離が離れていると 減衰するなどの状況が当てはまる.

(2) 平均的距離減衰相関下での大数の法則

本節では、平均的距離減衰相関下での確率変数についての大数の法則について考察する.

 $\overline{X} \equiv \sum_{a \in A} X_a/n$ (全てのリンクの確率変数の和をリ ンク数で除したもの), $\mu \equiv \sum_{a \in A} \mu_a/n$ (全てのリンク の平均の和をリンク数で除したもの), $S \equiv \sum_{a \in A} X_a$ と する. チェビシェフの不等式²⁵⁾より, $\varepsilon > 0$ の時, 次 式が成立する.

$$\Pr\left[\left|\overline{X} - \mu\right| > \varepsilon\right] \le \frac{1}{\varepsilon^2} \operatorname{Var}\left[\overline{X}\right] = \frac{\operatorname{Var}[S]}{n^2 \varepsilon^2}$$
(15)

ただし、 $Var[S] = \sum_{a \in A} \sum_{a' \in A} \sigma_{aa'}$ であり、 $\sigma_{aa'}$ は以下 の通りである.

$$\sigma_{aa'} = \begin{cases} \operatorname{Var}[X_a] & \text{if } a = a' \\ \operatorname{Cov}[X_a, X_{a'}] & \text{otherwise} \end{cases}$$
(16)

なお、Var は分散を与える演算であり、Cov は共分 散である.式11のvを用いると、

$$\sum_{a \in A} \sum_{a' \in A} \sigma_{aa'} = \sum_{a \in A} \sigma_a^2 + \sum_{a \in A} \sum_{a' \in A_{-a}} \sigma_{aa'} \le n\nu + \sum_{a \in A} \sum_{a' \in A_{-a}} \frac{\nu}{d_{aa'}}$$
(17)

ここで、右辺第2項について考えるために、リン ク a (の中点)から距離 d 離れた幅 Δd のリングの範 囲に(その中点が)存在するリンクを考える. 図-1 の灰色の部分である.リングの幅 Δd は微小であると すると、そのリングの面積は $2\pi d\Delta d$ と考えることが できる. $\rho_a(d)$ をリンク a の中点から距離 d にある(他

図-1 共分散の計算のためのリング

の) リンクの密度とすると、そのリング内にあるリ ンク数は $2\pi\rho_a(d)d\Delta d$ である.このようなリングはリ ンク a から最も遠いリンクまでの距離をとればよい. ネットワークの領域で最も離れた長さを d_{max} とする. つまり、ネットワーク領域の境界で最も離れた距離 である.上式の右辺第2項は以下のように書ける.

$$\sum_{a'\in A_{-a}} \frac{\nu}{d_{aa'}} = \sum_{a'\in A_a(d_0)} \frac{\nu}{d_{aa'}} + 2\pi\nu \int_{d_0}^{d_{\max}} \frac{\rho_a(d)\Delta d}{d^{\lambda}}$$
(17)

ここで、 $A_a(d_0)$ はリンク a から距離が d_0 までの範囲 (半径 d_0 の円) に存在するリンク a 以外のリンクの 集合である. d_0 は有限な定数とすると、上の式の右 辺第一項も常に(いずれのリンクが上の式のリンク a であっても)有限値をとる.その最大値以上の有 限値を κ とする.つまり、

$$\kappa \ge \max\left[\sum_{a' \in A_a(d_0)} \frac{\nu}{d_{aa'}}\right] \quad \forall a \in A$$
(18)

リンク密度の最大値は前述の通り, ρ_{\max} で, $\rho_a(d) \leq \rho_{\max}$ である.したがって,

$$\sum_{i'\in A_{-a}} \frac{\nu}{d_{aa'}} \leq \kappa + 2\pi\nu\rho_{\max} \int_{d_0}^{d_{\max}} \frac{\Delta d}{d^{\lambda}}$$
(19)

リンク総数が n のネットワークの d_{max} について考 えよう.リンク総数が n のネットワークで最も d_{max} 大きくなるのは全てのリンクが一直線上に順番につ ながった場合である、上述の通り、リンクの最大長 は η であるため、リンク総数が n のネットワークの d_{max} の最大値は $n\eta$ である.つまり、 $d_{max} \le n\eta$ とな る.したがって、

$$\sum_{i'\in A_{-a}} \frac{\nu}{d_{aa'}} \leq \kappa + 2\pi \nu \rho_{\max} \int_{d_0}^{n\eta} \frac{\Delta d}{d^{\lambda}}$$
(20)

$$\mathcal{E}^{\dagger}\mathcal{A}\mathcal{S}. \quad \mathcal{Z} \subset \mathcal{C},$$

$$\int_{d_0}^{n\eta} \frac{\Delta d}{d^{\lambda}} = \frac{(n\eta)^{1-\lambda} - d_0^{1-\lambda}}{1-\lambda} \tag{21}$$

である.ただし,

$$\lim_{\lambda \to 1} \frac{(n\eta)^{1-\lambda} - d_0^{1-\lambda}}{1-\lambda} = \ln\left[\frac{n\eta}{d_0}\right]$$
(22)

である。以上より,

$$\sum_{a \in Aa' \in A} \sigma_{aa'} \leq \left(\kappa + \nu - \frac{2\pi\nu\rho_{\max}d_0^{1-\lambda}}{1-\lambda}\right)n + \frac{2\pi\nu\rho_{\max}\eta^{1-\lambda}}{1-\lambda}n^{2-\lambda}$$
(23)

となる. したがって,

$$\operatorname{Var}\left[\overline{X}\right] \leq \left(\kappa + \nu - \frac{2\pi\nu\rho_{\max}d_0^{1-\lambda}}{1-\lambda}\right) n^{-1} + \frac{2\pi\nu\rho_{\max}\eta^{1-\lambda}}{1-\lambda} n^{-\lambda}$$
(24)

よって、
$$\lambda > 0$$
 であるため、

$$\lim_{n \to \infty} \operatorname{Var}[\overline{X}] = 0$$
(25)

式 15 より,

$$\lim_{n \to \infty} \Pr[|\overline{X} - \mu| > 0] = 0$$
(26)

となる.これは、 \overline{X} が μ に確率収束することを意味 している.以上のように、平均的距離減衰相関下の 確率変数に対して、大数の弱法則が成立する.

(3) 推定量の一致性

最尤推定量を $\hat{\boldsymbol{\theta}}$ とする.最尤推定量は尤度関数を最大にしたものであるため,任意の $\boldsymbol{\theta}$ に対して,

$$L(\hat{\boldsymbol{\theta}}) \ge L(\boldsymbol{\theta}) \tag{27}$$

が成立する.

パラメータ θ の真値を θ_0 とし、この真値 θ_0 に関して、 期待値をとる演算を E_0 と表記することにする. すなわち、 E_0 に関しては、以下の式が成り立つ.

$$\mathbf{E}_{0}[y] = \int y f_{\mathbf{X}}(\mathbf{x}|\boldsymbol{\theta}_{0}) d\mathbf{x}$$
(28)

自然対数関数 $\ln x$ は凹関数であるため、イェンセン (Jensen)の不等式 ²⁵⁾より、 θ_0 以外の任意の推定量 θ' について、次式が成立する.

$$\mathbf{E}_{0}\left[\ln\frac{l(\boldsymbol{\theta}')}{l(\boldsymbol{\theta}_{0})}\right] < \ln \mathbf{E}_{0}\left[\frac{l(\boldsymbol{\theta}')}{l(\boldsymbol{\theta}_{0})}\right]$$
(29)

ここで, *l*(θ) は既に述べた尤度関数である.

尤度関数の定義より、 $l(\theta) = f_X(\mathbf{x}|\theta)$ であるため、

$$\mathbf{E}_{0}\left[\frac{l(\boldsymbol{\theta}')}{l(\boldsymbol{\theta}_{0})}\right] = \int \frac{l(\boldsymbol{\theta}')}{l(\boldsymbol{\theta}_{0})} f_{\mathbf{X}}(\mathbf{x} | \boldsymbol{\theta}_{0}) d\mathbf{x} = \int f_{\mathbf{X}}(\mathbf{x} | \boldsymbol{\theta}') d\mathbf{x} = 1$$
(30)

となる.これの自然対数をとり、式29に代入すると、

$$\mathbf{E}_{0}\left[\ln\frac{l(\boldsymbol{\theta}')}{l(\boldsymbol{\theta}_{0})}\right] = \mathbf{E}_{0}\left[L(\boldsymbol{\theta}') - L(\boldsymbol{\theta}_{0})\right] < \ln\mathbf{E}_{0}\left[\frac{l(\boldsymbol{\theta}')}{l(\boldsymbol{\theta}_{0})}\right] = 0 \quad (31)$$

ここで、 $\mathbf{x}^{k} = (x_{1}, x_{2}, ..., x_{k})^{T}$ とする $(1 \le k \le n)$. ただし、^T は転置である. つまり、 \mathbf{x}^{k} は k 番目の要素までのベクトル であり、 $\mathbf{x}^{n} = \mathbf{x}$ である. 既に述べたように、尤度関数は $l(\mathbf{\theta}) = f_{\mathbf{x}}(\mathbf{x}|\mathbf{\theta})$ である. ベイズの定理により、

$$f_{\mathbf{X}}(\mathbf{x} \mid \mathbf{\theta}) = f_{X_n}(x_n \mid \mathbf{x}^{n-1}, \mathbf{\theta}) f_{\mathbf{X}^{n-1}}(\mathbf{x}^{n-1} \mid \mathbf{\theta})$$
(32)

また,任意の k について,

$$f_{\mathbf{X}^{k}}(\mathbf{x}^{k} | \mathbf{\theta}) = f_{X_{k}}(x_{k} | \mathbf{x}^{k-1}, \mathbf{\theta}) f_{\mathbf{X}^{k-1}}(\mathbf{x}^{k-1} | \mathbf{\theta})$$
(33)

である.表記を単純にするために, $p_{k,0} = f_{X_k}(x_k | \mathbf{x}^{k-1}, \mathbf{\theta})$ とする.ただし, $f_{X_1}(x_1 | \mathbf{x}^0, \mathbf{\theta}) = f_{X_1}(x_1 | \mathbf{\theta}) = p_{1,0}$ である.したがって,尤 度関数および対数尤度関数は次の通りとなる.

$$l(\mathbf{\theta}) = f_{\mathbf{X}}(\mathbf{x} \mid \mathbf{\theta}) = \prod_{k=1}^{n} p_{k,\mathbf{\theta}}$$
(34)

$$L(\mathbf{\theta}) = \sum_{k=1}^{n} \ln p_{k,\mathbf{\theta}}$$
(35)

*p*_{k,0}は互いに独立とは限らないが,前節で述べた平均距離減衰相関であると仮定することは自然であり,前節で述べたように大数の弱法則が成り立つ.したがって,

$$\frac{\frac{1}{n}L(\mathbf{\theta}) = \frac{1}{n}\sum_{k=1}^{n}\ln p_{k,\mathbf{\theta}}$$

$$\xrightarrow{p} \frac{1}{n}E\left[\sum_{k=1}^{n}\ln p_{k,\mathbf{\theta}}\right] = \frac{1}{n}E[L(\mathbf{\theta})]$$

$$(36)$$

$$\downarrow^{(j)},$$

式 31 より,

$$\frac{L(\mathbf{\theta}') - L(\mathbf{\theta}_0)}{n} \xrightarrow{p} \frac{1}{n} \mathbb{E}_0 \left[L(\mathbf{\theta}') - L(\mathbf{\theta}_0) \right] < 0 \quad (37)$$

したがって,

$$\frac{L(\mathbf{\theta}) - L(\mathbf{\theta}_0)}{n} \le 0 \tag{38}$$

が確率収束的に成り立つ. 一方, 前述の通り, 最尤推定 量について, $L(\hat{\theta}) \ge L(\theta)$ であるため, $L(\hat{\theta})$ は $L(\theta_0)$ に 確率収束する. したがって, $\hat{\theta}$ が 1 つに求まるとき, 最尤 推定量 $\hat{\theta}$ はその真値 θ_0 に確率収束する. 以上の通り, 平均的距離減衰相関なデータについて, 一致性を示す ことができた.

(4) 推定量の有効性

尤度関数 1(0)は確率密度関数であるため,

$$\int \cdots \int l \, dx_1 \cdots dx_n = 1 \tag{39}$$

となる.両辺の自然対数をとると,

$$\int \cdots \int L \, dx_1 \cdots dx_n = 0 \tag{40}$$

となる. この式の中の尤度関数 $L(\theta)$ を θ_j で微分すると,

$$\mathbf{E}\left[\frac{\partial \log l}{\partial \theta_j}\right] = \mathbf{E}\left[\frac{\partial L}{\partial \theta_j}\right] = \int \cdots \int \left(\frac{1}{l}\frac{\partial l}{\partial \theta_j}\right) l \, dx_1 \cdots dx_n = 0 \quad (41)$$

となる. 上式をさらに $\theta_{j'}$ で微分すると,

$$\int \cdots \int \left\{ \frac{\partial L}{\partial \theta_j} \frac{\partial L}{\partial \theta_{j'}} + \frac{\partial^2 L}{\partial \theta_j \partial \theta_{j'}} \right\} l \, dx_1 \cdots dx_n$$

$$= \mathbf{E} \left[\frac{\partial L}{\partial \theta_j} \frac{\partial L}{\partial \theta_{j'}} \right] + \mathbf{E} \left[\frac{\partial^2 L}{\partial \theta_j \partial \theta_{j'}} \right] = 0$$
(42)

が得られる.

ここで、上式の中辺の第二項の符号を負にしたものを 成分に持つフィッシャーの情報行列 I について考えよ う.

なお, 行列 I の j 行 j' 列の成分である $I_{jj'}$ は以下の通り である.

$$I_{jj'} = -E\left[\frac{\partial^2 L}{\partial \theta_j \partial \theta_{j'}}\right]$$
(44)

前述の通り,最尤推定量 θ は(対数) 尤度関数を最大 にさせたものである.したがって,以下の尤度方程式が 成り立つ.

$$\nabla_{\boldsymbol{\theta}} L(\hat{\boldsymbol{\theta}}) = \boldsymbol{0} \tag{45}$$

ただし,

$$\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) = \left[\frac{\partial L(\boldsymbol{\theta})}{\partial \theta_1}, \frac{\partial L(\boldsymbol{\theta})}{\partial \theta_2}, \dots\right]^T$$
(46)

である.ここで, ^Tは行列・ベクトルの転置である.

ここで、最尤法によって得られた値 $\hat{\theta}$ と真値 θ_0 の差 は小さいとして、上式を θ_0 を中心に1次のテーラー展開 を行うと、

$$\nabla_{\boldsymbol{\theta}} L(\hat{\boldsymbol{\theta}}) = \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_0) + \nabla_{\boldsymbol{\theta}}^2 L(\boldsymbol{\theta}_0) \left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0\right)$$
(47)

となる.上式の右辺第2項は行列であり,そのj行j'列の 成分について考えよう.ネットワークのリンクの交通量や 旅行時間が平均的距離減衰相関が成り立つと仮定する と,その大数の法則を適用するのは自然であり,

$$\frac{1}{n} \frac{\partial^2 L}{\partial \theta_j \theta_{j'}} = \frac{1}{n} \sum_{k=1}^n \frac{\partial^2 \ln p_{k,\mathbf{0}}}{\partial \theta_j \theta_{j'}}$$
$$\xrightarrow{p} \frac{1}{n} E \left[\sum_{k=1}^n \frac{\partial^2 \ln p_{k,\mathbf{0}}}{\partial \theta_j \theta_{j'}} \right] = \frac{1}{n} E \left[\frac{\partial^2 L}{\partial \theta_j \theta_{j'}} \right] = -\frac{1}{n} I_{jj'}$$
(48)

が成り立つ.よって,式 45 と 47 から,

$$abla_{\mathbf{0}} L(\mathbf{\theta}_0) - \mathbf{I} (\hat{\mathbf{\theta}} - \mathbf{\theta}_0) = \mathbf{0}$$

が得られる.次に,最尤推定量 **θ**の平均と分散を見るために,上式の左辺第1項のベクトルの確率的性質について考えよう.このベクトルの成分についても,平均的距離減衰相関下の大数の法則を適用すると,

$$\frac{1}{n}\frac{\partial L}{\partial \theta_j} = \frac{1}{n}\sum_{k=1}^n \frac{\partial \ln p_{k,\theta}}{\partial \theta_j} \xrightarrow{p} \frac{1}{n} \operatorname{E}\left[\sum_{k=1}^n \frac{\partial \ln p_{k,\theta}}{\partial \theta_j}\right] = \frac{1}{n} \operatorname{E}\left[\frac{\partial L}{\partial \theta_j}\right]$$
(50)

が得られ,式 41 より, $E[\nabla_{\theta}L(\theta_0)] = 0$, つまり, 平均は0 であることがわかる. したがって,式 49 から

$$\mathbf{E}\left[\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0\right] = \mathbf{0} \tag{51}$$

(49)

となる.

$$\nabla_{\mathbf{\theta}} L(\mathbf{\theta}_0)$$
の成分である $\partial L(\mathbf{\theta}_0) / \partial \theta_i$ の分散については,

その平均が0であるため,式42と44より,以下の通りとなる.

$$\operatorname{Var}\left[\frac{\partial L}{\partial \theta_{j}}\right] = \operatorname{E}\left[\left(\frac{\partial L}{\partial \theta_{j}}\right)^{2}\right] = -\operatorname{E}\left[\frac{\partial^{2} L}{\partial \theta_{j}^{2}}\right] = I_{jj} \qquad (52)$$

ここで、 Var は分散を計算する演算子である. 同様にして、 $\nabla_{\mathbf{0}} L(\mathbf{0}_0)$ の分散共分散行列は I であることがわかる. 式 49 と 51 から

 $Var[\hat{\theta} - \theta_0] = E[(\hat{\theta} - \theta_0)^2] = (I^{-1})^2 E[\{\nabla_{\theta} L(\theta_0)\}^2] = I^{-1} (53)$ となる. つまり, $\hat{\theta} - \theta_0$ の分散共分散行列は I^{-1} となる. し たがって, 最尤推定量 $\hat{\theta}$ は平均ベクトルが θ_0 で, 分散共 分散行列が I^{-1} となる. これは最尤推定量 $\hat{\theta}$ がラオ・クラ メールの下限^{??)}であり, 有効であることを示している.

(5) 推定量の有意性

平均的距離減衰相関のデータの最尤推定量が漸近 的に正規分布に従うかどうかについては今後の課題で ある.現状では必ずしも正規分布に従わないと想定せざ るを得ない.

最尤推定量が漸近的に正規分布に従う場合は t 検定 によって推定値の有意性を検討することができる.平均 的距離減衰相関のデータについては、それを行うことが できないため、チェビシェフの不等式²⁵⁾を用いて、推 定値の有意性を検討することを考える.

データ (実現値) \mathbf{x} が得られた時の最尤推定法によって推定した j 番目のパラメータ値を $u_j(\mathbf{x})$ とする. この時,チェビシェフの不等式より,

$$\Pr\left[\left|\hat{\theta}_{j}\right| > u_{j}(\mathbf{x})\right] \leq \frac{\operatorname{Var}\left[\hat{\theta}_{j}\right]}{u_{j}(\mathbf{x})^{2}} = \frac{I_{jj}}{u_{j}(\mathbf{x})^{2}}$$
(54)

が得られる. 最尤推定量が 0 であるという帰無仮説, すなわち, $\hat{\theta}_j = 0$ の生起確率は $I_{jj}/u_j(\mathbf{x})^2$ 以下となる. ここで注意すべきことは,チェビシェフの不等式を 用いており,データが必ずしも効率的に使われてい ないことである.

5. おわりに

交通ネットワーク均衡モデルを用いる際,モデルのパ ラメータを推定することが必要になることが多い.ネットワ ーク均衡モデルでのパラメータ推定では,データ入手の 容易さの観点から,リンク交通量の利用が便利である. 従来から均衡モデルが算出する計算交通量と実際のネ ットワークの交通量である実交通量の二乗誤差が最小と なるようにパラメータが推定されることが多かった.しかし, このような最小二乗法では,各リンクの交通量が独立で あることが前提条件となるが、現実のリンク交通量はリン ク間で独立ではなく、近接するリンクでは、その相関はか なり高いと考えられ、リンク交通量の相関等の観点から 理論上問題であり、推定したパラメータにバイアスが含ま れる恐れもある.本研究では、最尤推定法によってリンク 間の交通量の相関を考慮した交通ネットワーク均衡モデ ルのパラメータ推定法を提案し、交通量の観測リンク数 が十分に大きい場合、その推定量が真値となることを示 した.そして、単純なネットワークでのパラメータ推定を 行い、本手法の有用性について考察した。単純なネット ワークのため、本手法と従来からの最小二乗法とではパ ラメータの推定値自体には大きな違いは見られなかった が、本手法を用いることによって、均衡モデルのパラメー タの有意性やモデル選択の検討が可能であることなど が確認できた。

今後の課題としては、大規模ネットワークへの適用の ための尤度関数の設定方法や計算アルゴリズムの開発 が挙げられる.そして、その計算アルゴリズムを用いて、 リンク数の増加に伴う推定精度の向上(推定量の一致性 の確認)や局所従属性の実際的な適用範囲(どれほど の局所性が必要であるのか)の検証を行うことが必要で ある、また、本稿の数値計算では、推定パラメータ値自 体は ML と MSE で違いはあまり見られなかったが、大規 模ネットワークでもそうであるのか等も検討する必要もあ る.

謝辞:本研究は,科学研究費補助金 15760393 (若手研究 B,研究代表・中山晶一朗),18760387 (若手研究 B,研究代表・中山晶一朗),16360254 (基盤研究 B,研究代表・高山純一)の援助により行われているものである.ここに記し,感謝の意を表します.

参考文献

- Wardrop, J.G.: Some Theoretical Aspects of Road Traffic Research, *Proceedings of the Institution of Civil Engineers*, Part II, Vol. 1, pp.325-378, 1952.
- Daganzo, C.F. and Sheffi, Y.: On Stochastic Model of Traffic Assignment, *Transportation Science*, Vol. 11, pp. 253-274, 1977.
- Fisk, C.: Some Developments in Equilibrium Traffic Assignment, *Transportation Research*, Vol. 14B, pp. 243-255, 1980.
- 4) 例えば, Sheffi, Y.: Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods, Prentice-Hall, Englewood Cliffs, N.J., 1985.
- 5) Robillard, P.: Calibration of Dial's Assignment Method, *Transportation Science*, Vol. 8, pp. 117-125, 1974.
- Fisk, C.: Note on the Maximum Likelihood calibration on Dial's Assignment Method, *Transportation Research*, Vol. 11, pp. 67-68, 1977.

- Daganzo, C.F.: Some Statistical Problems in connection with Traffic Assignment, *Transportation Research*, Vol. 11, pp. 385-389, 1977.
- Hazelton, M.L.: Estimation of Origin-Destination Matrices from Link Flows under Uncongested Networks, *Transportation Research*, Vol. 34B, pp. 549-566, 2000.
- Anas, A. and Kim, I.: Network Loading versus Equilibrium Estimation of the Stochastic Route Choice Model: Maximum Likelihood and Least Squares Revisited, *Journal of Regional Science*, Vol. 30, pp. 89-103, 1990.
- Chen, M. and Alfa, A.: A Network Design Algorithm Using a Stochastic Incremental Traffic Assignment Approach, *Transportation Science*, Vol. 25, pp. 215-224, 1991.
- Davis, G.A.: Exact Local Solution of the Continuous Network Design Problem via Stochastic User Equilibrium Assignment, *Transportation Research*, Vol. 28B, pp. 61-75, 1994.
- 12) Yang, H., Meng, Q. and Bell, M.G.H: Simultaneous Estimation of the Origin-Destination Matrices and Travel-Cost Coefficient for Congested Networks in a Stochastic User Equilibrium, *Transportation Science*, Vol. 35, pp. 107-123, 2001.
- Lo, H.P. and Chan, C.P.: Simultaneous Estimation of an Origin-Destination Matrix and Link Choice Proportions Using Traffic Counts, *Transportation Research*, Vol. 37A, pp. 771-788, 2003.
- 14) Ying, J.Q. and Yang, H.: Sensitivity Analysis of Stochastic User Equilibrium Flows in a Bi-Modal Network with Application to Optimal Pricing, *Transportation Research*, Vol. 39B, pp. 769-795, 2005.
- 15) 中山晶一朗, 高山純一, 長尾一輝, 笠嶋崇弘:旅行時間 の不確実性を考慮した交通ネットワーク均衡モデル, 土

木学会論文集, No. 772/IV-65, pp. 67-77, 2004.

- 16) 中山晶一朗,高山純一:交通需要と経路選択の確率変動を 考慮した交通ネットワーク均衡モデル,土木学会論文集 D, Vol. 62, No. 4, pp. 537-547, 2006.
- Clark, S. and Watling, D.: Modelling Network Travel Time Reliability under Stochastic Demand, *Transportation Research*, Vol. 39B, pp. 119-140, 2005.
- 18) 中山晶一朗,高山純一,長尾一輝,所俊宏:現実道路ネット ワークの時間信頼性評価のための確率的交通均衡モデル 及びそれを用いた情報提供効果分析,土木学会論文集 D, Vol. 62, No. 4, pp. 526-536, 2006.
- 19) Clark, C.E.: The Greatest of a Finite Set of Random Variables, *Operations Research*, Vol. 9. pp. 145-162, 1965.
- Mendell, N.R. and Elston, R.C.: Multifactorial Qualitative Traits: Genetic Analysis and Prediction of Recurrence Risks, *Biometrics*, Vol. 30, pp. 41-47, 1974.
- Rice, J., Reich, T. and Cloninger, C.R.: An Approximation to the Multivariate Normal Integral: Its Application to Multifactorial Qualitative Traits, *Biometrics*, Vol. 35, pp. 451-459, 1979.
- 22) Stuart, A., Ord, J.K., and Arnold, S.: *Kendall's Advanced Theory of Statistics*, Vol. 2A, 6th ed., Arnold, London, 1999.
- 23) Bar-Shalom, Y.: On the Asymptotic Properties of the Maximum-Likelihood Estimate Obtained from Dependent Observations, *Journal of the Royal Statistical Society*, Vol. 33B, pp. 72-77, 1971.
- 24) Lehmann, E.L. and Casella, G.: *Theory of Point Estimation*, 2nd Ed., Springer, Berlin, 1998.
- 25) 例えば, Stirzaker, D.: *Elementary Probability*, 2nd Ed., Cambridge University Press, Cambridge, U.K., 2003.
- 26) リンク交通量を用いた交通ネットワーク均衡モデルのパラメ ータ推定:リンク間相関を考慮した最尤法,土木学会論文集 D, Vol. 62, No. 4, pp. 548-557, 2006.

(201?.?.?受付)

ESTIMATION OF PARAMETERS ON NETWORK EQUILIBRIUM MODEL USING LINK FLOW DATA: MAXIMUM LIKELIHOOD METHOD CONSIDERING LINKS' CORRELATION

Sho-ichiro NAKAYAMA

Link flow data are convenient for estimating parameters on network equilibrium models because they are easy to access. The minimum square error method has been adopted for parameter estimation in many cases. The minimum square error method presupposes that link flows are mutually independent, but actual link flows are not independent, especially, correlation between adjacent links is very high. Therefore, the minimum square error method is not necessarily appropriate from the statistical standpoint and the estimated parameters might be biased although we may be able to estimate parameters using it practically. In this study, we propose a method for estimating parameters on network equilibrium models which considers the correlation between links. Also, we examine which conditions are needed for estimating them consistently.