

New Generation Large Scale Activity Microsimulation Models (SimAGENT) & Data Needs

Konstadinos (Kostas) G. Goulias-University of California Santa Barbara

oulias@geog.ucsb.edu

+1-805-284-1597 http://www.geog.ucsb.edu/geotrans/publications.php

> September 21st, 2013 Summer School

Policy Examples & Tools

- Policy Context -> DECREASE CO2 Emissions
 - Vehicle Technology
 - Fuel Technology
 - VMT Decrease Using Land Use & Pricing &......
 - Equity analysis and allocation to small communities
- STATEWIDE & REGIONAL Land Use-Transportation Models
 - PECAS development
 - Travel Model
 - Emissions
- SimAGENT for SCAG
 - Dynamic Microsimulation
 - Year to year
 - Second by second

Overarching Strategies

California Policies but will expand (we hope!)

Reducing Greenhouse Gases: Shared Responsibilities SB 375 (Steinberg) and SB 391 (Liu)

Southern California Association of Governments (SCAG)

SCAG Quick Facts

⁷ (SimAGENT ⁷ (Simulator of Activities, Greenhouse Emissions, Networks, and Travel)

Kostas Goulias & Yali Chen + others in GeoTrans laboratory University of California Santa Barbara

Chandra Bhat & Rajesh Paleti + others The University of Texas Austin

Guoxiong Huang, Hsi-Hwa Hu + others SCAG Los Angeles+

 Ram Pendyala & Karthik Konduri + others

Arizona State University Tempe

Typical Schema SimAGENT

Baseline Year (t=1)

- Synthetic Population
- Accessibility by Time-of-Day
- Long Term Choices
- •Car Ownership and Type
- Activity and Travel Scheduling
- Routes & Assignment
- •Energy Consumption & Emissions

Agent and Environment Evolution

- Population Evolution
- Urban Landscape
 Evolution
- Infrastructural Changes
- Scenario Databases
- Information Fusion
- Accessibility Computation

One Year Later (t=t+1)

- Synthetic Population
- Accessibility by Time-of-Day
- Long Term Choices
- Car Ownership and Type
- Activity and Travel Scheduling
- Routes & Assignment
- Energy Consumption & Emissions

Some Early Benefits of SimAGENT

- Synergy with SCAG and three Universities
- Motivated SCAG technical partners to develop their own new research applications
- Developed an inventory of the region's characteristics and data availability = many practical applications
- Updated and used older models including the 4-step model -> now 11K zones + synthetic population used
- Designed/Redesigned a large scale (50,000 household survey happening now)
- SCAG first of class pride = job satisfaction, more funding, leadership role in California
- Satisfied my professional curiosity and met challenge of building an ENORMOUS model
- Great education tool
- Students that worked on SimAGENT get very good job offers!

Team

Research Team:

UCSB (prime): *Dr. Kostas Goulias, Dr. Yali Chen, Dr. Seo Youn Yoon, and...*

UT Austin: *Dr. Chandra Bhat, Dr. Rajesh Paleti, and...* **ASU**: *Dr. Ram Pendyala, Dr. Karthik Konduri, and ...*

See papers for all the names

SCAG:

Program manager: Dr. *Hsi-Hwa Hu* **Model estimation and calibration**:

Dr. Bayarmaa Aleksandr Software and model operation: Hao Cheng Model validation: Mana Sangkapichai and Sung Su Yoon

Travel survey and data: Dr. Yongping Zhang

Model Concept

The Activity-Based Travel Demand Modeling (ABM) is an agent-based modeling in which individuals and their interaction with each other and their environment are explicitly represented.

Activity-based approaches view travel as a derived demand to pursue activities.

- It considers link between activity participation behavior and travel behavior,
- It accommodates the interaction among different activities pursued by an individual and
- It accommodates the interaction between the temporal and spatial dimensions of activity participation.

Model Purpose

SCAG ABM will be fully implemented for the 2016 Regional Transportation Plan/Sustainable Community Strategies - major investment strategies.

The model will generate performance indicators, conformity analysis, and environmental justice analysis.

□ To analyze the impact of infrastructure investment, land use development, pricing policy, active transportation, high speed rail, and travel demand management.

Stage 1 Model Development

Motivation (of the funding agency)

RTP Guideline by California Transportation Commission - the largest four MPOs in California are encouraged to transition

to activity-based travel demand models.

Progress

Stage 1 Model Development

OVERVIEW OF SimAGENT for SCAG

SimAGENT

Creates synthetic household/person and their socioeconomic characteristics.

Simulates daily activities and travel patterns for each person (18 million +) of SCAG region

Outcome = every person with a day timer attached to them just like travel survey

Model outputs are converted to OD matrix and input to assignment for SCAG

Model outputs also used as inputs for TRANSIMS and MATSIM experiment

SimAGENT SCAG version Flowchart

Salient Features of SimAGENT SCAG

- Can be applied to any metropolitan area
- Comprehensively characterizes the activity-travel patterns of all household members
- Incorporates spatial-temporal dependencies and constraints in activity-travel patterns between and within individuals of a household.
- Incorporates advanced vehicle type choice model, which determines the mix of vehicles in a fleet and naturally impacts mobile-source emissions estimation, energy consumption, and greenhouse gas emissions.

Salient Features of SCAG ABM

□ It facilitates environmental justice (EJ) analyses by having the ability to examine the effects of policies on any defined segment.

Enables a holistic assessment of the effects of land-use, built environment, and transportation policies on entire activity-travel patterns.

□ Accessibility that is sensitive to time of day, availability of opportunities and variation of transportation level of service, offers increased behavioral realism and behavioral sensitivity to the combined impact of land use and level of service improvements.

Salient Features of SCAG ABM

Temporal Resolution

- Continuous time scale
- Level-of-service data can be provided at any temporal resolution

Spatial Resolution

Allows for any number of zones

Software

- Involves a portable and flexible object-oriented software architecture design, ensuring data and data processing integrity, parallel processing and multi-threading capability, extensibility and modifiability in structure, and usability.
- Standard Window-based user interface
- Allows user to modify model parameters
- Provides a friendly diagrammatic interface to help the user understand the logic of the system and the underlying models

SCAG ABM framework: SimAGENT

SimAGENT (Simulator of Activities, Greenhouse Emissions, Networks, and Travel) is the base framework of SCAG ABM.

SimAGENT is a model system that includes

- Synthetic population generator,
- Disaggregated socioeconomic module and work location and vehicle ownership/type modules,
- Daily activity and travel scheduling module

SimAGENT Model System

INPUTS	~~>	Models	\mapsto	OUTPUTS	
Ponulation			-	Household table	
Employment		Popgen		riousenoia ladie	
SCAG SURVEY		CEMSELTS		Person table	
School drop_out rate		CEMDAP		Activities	
Education attainment				Tours	
status				Stops	
Zone attributes				Tirin table	
LOS					
Geographic correspondence files					
Road Network					
Transit Network					
Policies					

SimAGENT Sequence and Modules

Traffic & Transit Assignment

PopGen generates eight basic attributes that are not enough to reflect a rich variance in socioeconomic characteristics for the region's 18 million population.

CEMSELTS generates additional person and household socioeconomic attributes that fed to CEMDAP to simulate daily activitytravel patterns.

CEMDAP is the core module that simulates activity schedule and travel characteristics for each individual of the region.

Summary

PopGen and CEMSELTS modules create the entire population of the region, provide locations for workplaces, and schools for each person, estimates car ownership and type as well as main driver for each vehicle, and provides other key personal and household characteristics.

CEMDAP module creates a complete description of the activities at locations and movements among locations of each individual over space and time that is congruent with the movements of the rest of the household members.

In this way, for each person, we have information about the type of activity, when, where, how long, how to travel, with whom, in what sequence, and interrelationships with other persons and locations in the engagement pattern.

Summary cont.

□ CEMDAP output is converted to OD matrix as input for assignment

□ Using the same assignment module from SCAG Trip-based Model in TransCAD.

□ Feedback skim and accessibility till converged.

Current Status

CORE MODULES

Population Synthesizer

What is PopGen?

A population synthesizer uses *Iterative Proportional Updating* (IPU) method which can simultaneously control household and person attributes.

PopGen

Generates complete synthetic population for base year by expanding the disaggregate sample data to mirror known aggregate distributions of household and person variables of interest.

Why Synthetic Population Data?

Need to disaggregate household and person socio-economic data for the entire population of SCAG.

32

□ Such data for the entire population is generally not available.

□ This leads to the need to synthesize a regional population from known statistical distributions on the population.

What we have:

- Disaggregate data for a sample of the population (*PUMS, travel survey*)
- Marginal distribution for the entire region (*census summary files, agency forecasts*)

Features of PopGen

PopGen

33

Controls for both household and person attributes

Automatically corrects for zero-marginal and zero-cell problems

Extendable

□ Scalable

Computationally tractable method implemented in userfriendly Windows and Linux operating systems

Provides goodness-of-fit measures to assess performance of population synthesis process

Procedure

PopGen

Choose control variables

Obtain the marginal distribution of these variables from census summary file (SF) or agency forecast

Create a seed matrix of the joint distribution from a microdata sample data set (PUMS, travel survey)

Expand the seed matrix using an IPF procedure to match the given marginal control totals while maintaining the joint distribution implied by the seed matrix

SCAG Population Synthesizer

PopGen

INPUTS	 PopGen	 >	OUTPUTS
Household and Person Sample Data			Household Attributes at TAZ Level
Household and person Marginal Distributions			Person Attributes at TAZ Level
Geographic correspondence file			Summary Statistics
			Мар

PopGen Inputs

PopGen

Summary Statistics

PopGen

Marginal Totals (for 10,579 TAZs)
 Household marginal total: 5,812,319
 Groupquarter marginal total: 336,451
 Person marginal total: 17,891,482

□ Sample Size

- > ACS 2005-2009 PUMS for State of California
- Household sample size: 628,061 (10.81 percent of HH marginal total)
- Groupquarter sample size: 34,358 (10.21 percent of GQ marginal total)
- Person sample size: 1,727,790 (9.66 percent of Person marginal total)

Household Attributes

PopGen

TAZ 270200000	5	Synthe	tic Ho	use	hold		4		Y	
Household Marginal	hhldchildren	Householder	hhldtype	Hous	sehold Si	ze (num	ber of	persor	ns)	
Note of own household childrenSizePresence of own household 	Presence of own household children	age 15-64 >=65	Type 1 Type 2 Type 3 Type 4 Type 5 Type 1 Type 2 Type 3 Type 4 Type 4		2 0 99 171 347 0 0 0 5 5 0 0 0	3 4 52 445 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 100 0 0 0 0 0 0 0 0 0 0	67 27 0 0 0 0 0 1 0 0 0	+ 10 12 0 0 0 0 0 0 1 0 0 0 0	$ \begin{array}{c} 1536 \\ 171 \\ 347 \\ 0 \\ 0 \\ 15 \\ 6 \\ 0 \\ 0 \\ 0 \\ $
Type 1 Family: married couple 625 Type 2 Family: male householder 71 Type 3 Family: female householder 140 Non-family: householder 140	No presence of own household	15-65	Type 1 Type 2 Type 3 Type 4 Type 5 Type 1	0 0 0 698 118 0	0 0 277 32 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 975 150
Type 4 alone 2149 Type 5 Non-family: householder not alone 394	children	>=66 Grand Total	Туре 2 Туре 3 Туре 4 Туре 5	0 0 110 49 975	0 0 17 2 851 90	0 0 0 0 0 0 0 0 61 450	0 0 0 0 100	0 0 0 0 28	0 0 0 1 14	0 127 52 3379

Person Attributes

PopGen

40

		S	inthetic Populat	on	4	
		X	Race		1-1	4714
	Gender	Age	AMIndi		K.L	
Population Marginal		XX	White African ska Asian	Islander race	races	
	$\overline{\mathbf{x}}$	<5	198 32 1	10 38 48	3 327	1////
Gender		5-14	165 40 3	4 30 23	3 265	
Male 2937		15-24	220 29 1	35 36 10	5 337	
Female 2588		25-34	701 50 3	38 72 40	5 910	
Age Race		35-44	671 71 3	20 63 31	l 859	
<5 347 White 4253	Male	45-54	515 39 4		624	
5-14 238 African- 413		55-64	204 16 2		<u> </u>	
15-24 370 American	\sim	75.04			2 92	$\left \right $
25-34 1352 AMIndian& 33	\nearrow	75-84			3 70	
35-44 1240 Alaska	\sim	Subtotal	2838 290 19 1	31 285 195	3758	X
45-54 1009 Asian 211			224 24 1	10 52 57	7 368	
55-64 472 Pacific 3	\swarrow	2	163 20 0	10 18 10) 221	
65-74 227 Islander	\sim	3	218 31 11	15 52 20	5 353	
75-84 158 other race 363		4	565 8 68 3	37 66 60	799	
>=85 112 2+ races 249		5	542 58 3	43 41 22	2 709	
	Female	6	466 42 3	27 28 27	7 593	
		7	183 25 3	3 17	3 239	$\sum A$
	X	8	102 8 0	2 1 5	118	
		9	79 2 0	5 2 2	2 90	
		10	56 3 0	0 0 0) 59	
		Subtotal	2598 281 24 1	52 277 217	3549	

Example of Outputs

PopGen

41

Results - Example of Household

PopGen

Household Size

43

Results - Example of Population

Summary

PopGen

Synthetic population data for SCAG ABM was created using PopGen (Population Generator) software developed at Arizona State University.

□ For the 2003 simulation year:

- Marginal distributions on control variables were furnished by the SCAG at the level of the traffic analysis zone (TAZ) for a total of 4109 zones.
- Applied recently to 11,000 zone system

□ Windows Server

- 16 cores, 72GB of RAM
- Effective synthesis model run time = 23 hours

Richer set of inputs is needed

Synthesizing huge populations (18 million) reduces variances in population characteristics that would be desirable in the context of the ABM model implementation.

Many key socio-economic attributes that may explain people and household choices are missing.

Next Step

CORE MODULES

CEMSELTS

Comprehensive Econometric Microsimulator of Socio-economics, Land-use, and Transportation System

CEMSELTS

 Create additional variables for each individual:
 Education Attainment

CEMSELTS

- Job Status
- Household Income
- Housing Type

Create Long-Term Choice Variables

- Vehicle Ownership & Type
- Job/School Location Choice

Vehicle type choice model

- Log-Regression model to predict annual household mileage
- Vehicle Fleet Composition → MDCEV
- 54 Alternatives: Combination of 9 body types and 6 vintage categories
 - Body type: Sub-compact car, Compact car, Medium car, Large Car, Sports car, Medium SUV, Large SUV, Van, Pickup
 - Vintage: New or 1 year, 2-3 years, 4-5 years, 6-9 years, 10 to 12 years, >12 years
 - Plus One non-motorized mileage alternative

CEMSELTS Individual level model output Comparison with ACS 2003 and Census 2000

	V	alues in Percen	t	Values in Percent			
Individual Socio-demographics	ACS 2003	CEMSELTS Predicted	Difference in Percentage	Census 2000	CEMSELT S Predicted	Difference in Percentage	
Enrollment of Children (3 to 17 years)							
Preschool - Grade 3	37.07	44.59	7.52	41.17	44.59	3.42	
Grade 4 - Grade 8	41.64	42.16	0.52	38.76	42.16	3.40	
Grade 9 - Grade 11	21.29	13.25	-8.04	20.07	13.25	-6.82	
Educational Attainment (Adults)							
Less than Grade 9	11.58	2.23	-9.35	13.14	2.23	-10.91	
Grade 9 - Grade 12 (no diploma)	12.05	8.28	-3.78	14.71	8.28	-6.44	
Completed High School	45.70	58.48	12.78	44.00	58.48	14.48	
Associate or Bachelors	22.55	22.95	0.41	20.77	22.95	2.18	
Graduate Degree (Masters or Ph D)	8.12	8.06	-0.06	7.37	8.06	0.69	
Labor Particination							
Employed	59.47	59.07	-0.40	56.81	59.07	2.26	
Unemployed	40.53	40.93	0.40	43.19	40.93	-2.26	
Employment Industry							
Construction and Manufacturing	19.92	14.46	-5.46	20.67	14.46	-6.21	
Trade and Transportation	4.94	7.32	2.38	4.86	7.32	2.46	
Personal, Professional and Financial	50.63	49.42	-1.21	49.34	49.42	0.08	
Public and Military	3.94	5.07	1.13	4.04	5.07	1.03	
Retail Trade	15.29	10.77	-4.51	15.60	10.77	-4.83	
Other	5.28	12.96	7.68	5.49	12.96	7.47	

CEMSELTS

CEMSELTS Household level model output Comparison with ACS 2003 and Census 2000

		Values in Percent		Values in Percent			
	ACS 2003	CEMSELTS Predicted	Difference in Percentage	Census 2000	CEMSELTS Predicted	Difference in	
Household Socio-demographics						Percentage	
Number of Vehicles	0.00	5.05	1.02	10.07		2.70	
Households with no vehicles	8.29	7.27	-1.02	10.07	7.27	-2.79	
Households with 1 vehicle	33.34	31.32	-2.02	34.85	31.32	-3.55	
Households with 2 vehicles	37.48	34.71	-2.77	37.16	34.72	-2.44	
Households with 3 vehicles	14.10	15.17	1.07	12.59	15.17	2.59	
Households with 4 or more vehicles	6.79	11.52	4.74	5.33	11.52	6.19	
Number of Workers							
Households with no workers	12.21	16.84	4.63	11.31	16.84	5.53	
Households with 1 worker	34.23	36.80	2.58	32.98	36.80	3.82	
Households with 2 or more worker	53.57	46.36	-7.21	55.71	46.36	-9.35	
Household Income							
\$0- \$9999	8.08	8.09	0.01	8.98	8.09	-0.89	
\$10,000-\$34,999	28.85	40.45	11.6	29.56	40.45	10.89	
\$35,000-\$49,999	15.05	14.47	-0.58	15.24	14.48	-0.76	
\$50,000-\$74,999	18.53	13.58	-4.95	18.89	13.58	-5.31	
\$75,000 and more	29.49	23.4	-6.09	27.32	23.40	-3.93	
Household Tenure							
Owner	55.74	61.05	5.30	54.78	61.03	6.25	
Renter	44.26	38.95	-5.30	45.22	38.97	-6.25	
Household Type for Owners							
Single Unit (Attached/Detached)	88.15	93.42	5.27	54.78	61.05	6.27	
Other	11.85	6.58	-5.27	45.22	38.95	-6.27	
Household Type for Renters							
Single Unit (Attached/Detached)	27.87	50.49	22.62	88.32	93.42	5.10	
Apartment	72.13	49.51	-22.62	11.68	6.58	-5.10	

CEMSELTS Work Flow Distribution by Destination

	With	in Origin C	ounty	Outside Origin County			Total			
Origin county	ACS2003 (%)	CEMSELTS 2003 (%)	Difference	ACS2003 (%)	CEMSELTS 2003 (%)	Difference	ACS2003 (%)	CEMSELTS 2003 (%)	Difference	
Los Angeles	52.79	52.63	-0.16	3.86	5.29	1.43	56.65	57.92	1.26	
Orange	15.61	14.28	-1.32	3.11	3.45	0.35	18.71	17.74	-0.98	
Riverside	6.57	7.65	1.09	3.19	1.85	-1.35	9.76	9.50	-0.26	
San Bernardino	6.88	7.58	0.70	3.18	2.60	-0.58	10.06	10.18	0.12	
Ventura	3.73	3.67	-0.06	1.09	1.00	-0.09	4.82	4.67	-0.15	
Total	85.57	85.81	0.24	14.43	14.19	-0.24	100	100	0.00	

CEMSELTS Vehicle Type Choice Model Results

Body Type	Survey Data	CEMDAP
Sub-compact Car	3.5	2.7
Compact Car	18.2	23.9
Medium Car	22.3	23.9
Large Car	5.7	3.3
Sports Car	5.6	4.1
Medium SUV	9.5	9.9
Large SUV	11.0	8.9
Van	7.0	5.9
Pickup	17.2	17.3

Summary

CEMSELTS is - software/module that contains a series of choice models estimates for long-term choices & other attributes (14 submodels).

Vehicle type choice determines vehicle fleet mix; critical to energy and emission analysis.

The resulting richer set of output is then fed to CEMDAP, the core activity-based modeling engine within SimAGENT to simulate complete daily activity-travel patterns for the population of the region.

CEMSELTS

Household Evolution Model

A model that progresses resident population year after year using smooth transitions instead of abrupt adjustments based on externally provided demographic data.

It enables to link demographic transition to behavioral change and demonstrate the market penetration of new technologies and adoption of new behavioral patterns in a realistic and verifiable way.

The project is almost complete (June, 2013).

CORE MODULES

CEMDAP

Comprehensive **E**conometric Microsimulator of Daily Activity-Travel Patterns

CEMDAP Module Comprehensive Econometric Microsimulator of Daily Activity-Travel Patterns

- Simulates activity schedule and travel characteristics for each individual of the region
- □ Core module of SimAgent
- □ 52 sub-models.
- Developed by UT Austin with new functions and acessibility.

Features of CEMDAP

PopGen

59

- □ A policy responsive tool
- □ Continues time scale (1440 minutes in a day)
- □ Allows any number of zones
- Level of service data can be provided at any temporal resolution (5 time of-day periods for SCAG ABM)
- **□** Explicitly considers time-space constraints
- Changes in the activity-travel pattern of one individual in a household may bring about changes in activity-travel patterns of other household members
- MDCEV approach facilitates modeling activity participation at a household level with joint activity participation incorporated in a simple fashion

Features of CEMDAP

Recognizing Fixities

Non-Workers

- No obvious activity with spatial and temporal fixities
- Person more flexible in scheduling his/her activities

Workers

- The "work" activity has spatial and temporal fixities
- Person schedules his/her activities around the work activity

CEMDAP System

NoGo

61

■ CEMDAP includes 52 sub-models

□ The econometric structure for each sub-model falls under one of the eight econometric model categories:

- 1. Multiple Discrete Continuous Extreme Value (MDCEV),
- 2. Fractional split
- 3. Binary logit
- 4. Multinomial logit
- 5. Hazard-duration
- 6. Regression,
- 7. Ordered probit and
- 8. Spatial location choice.

Person type

Population

Workers

-Who goes to work -Persons aged 16 or older

-Who goes to school -Persons aged 15 or younger

Non-workers

-Who does not go to work -Persons aged 16 or older

-Who does not go to school -Persons aged 15 or younger

Activity Types/Travel Purposes

□ Home □ Mandatory > Work > School □ Maintenance Drop-off at school Pick-up from school > Other serve-passenger > Shopping ➢ Work-related Household/personal business □ Discretionary □ Joint discretionary □ Children discretionary □ Social recreation

Eating out

Representing Activity-Travel Patterns

65

Non-Workers

CEMDAP Modeling Framework

Two major steps:

- 1. Generation Allocation
- 2. Scheduling

Activity Generation & Allocation

CEMDAP

Determine each person's decision on daily activities:

- Workers: Commute
- Children: Go to School
- Non-workers: Non-work Activities
- Parents: Pick up/Drop off
- All Household Members: Joint Activity

GA module: Generation of work and school activity participation

CEMDAP

□ Work and school activities are the greatest *space-time constraints* for most individuals

□ Participation in these activities significantly influences an individual's participation in all other activities during the day

GA Module: Children's Travel Needs & Allocation of Escort Responsibilities

CEMDAP

GA

GA Module: Generation of Independent Activities for Personal and Household Needs

For each household

CEMDAP

Fraction of time spent in nonwork out-of-home activities

Individual & Joint activity Participation Decisions of all Household members

For each adult

Decision to participate in Serve Passenger Activity GΔ

Activity & Travel Scheduling

CEMDAP

□ **Produce**:

- ➤ sequence of activities,
- with the departure and arrival times,

Scheduling

72

- > activity duration(s),
- > mode for each trip, and
- determination of the location of each activity.
Example of scheduling process For each worker

Example of scheduling process

Known "available time" during

each of after-work, work-based

and before work periods

Mode &

Number of

Stops

Predict the decision to

undertake tours (for non

work purposes) :

Before work (BW),

Work-based (WB), and

After-work (AW)

Mode &

Number of

Stops

CEMDAP

Modeling Non-work Activity Scheduling of **Workers:** Characterizing Tours

Scheduling

Worker Scheduling Model System

CEMDAP

Model ID	Model Name	Econometric Structure	Choice Alternative
WSCH1	Commute mode	MNL	Solo driver, Driver with passenger,
WSCH2	Number of before-work tours	Probit	0 or 1
WSCH3	Number of work-based tours	Ordered probit	0, 1 or 2
WSCH4	Number of after-work tours	Ordered probit	0, 1 or 2
WSCH5	Before-work tour mode	MNL	Solo driver, Driver with passenger,
WSCH6	Work-based tour mode	MNL	Solo driver, Driver with passenger,
WSCH7	After-work tour mode	MNL	Solo driver, Driver with passenger,
WSCH8	Number of stops in a tour	Ordered probit	1,2,3,4, or 5
WSCH9	Home or work stay duration before the tour	Regression	Continuous time
WSCH10	Activity type at a stop	MNL	10 Activity purposes
WSCH11	Activity duration at stop	Regression	Continuous time
WSCH12	Travel time to a stop	Regression	Continuous time
WSCH13	Location of a ston	Spatial Location	Choice alternatives based on estimated
wsems		Choice	travel time

Scheduling

Non-Worker Scheduling Model System

CEMDAP

Model ID	Model Name	Econometric Structure	Choice Alternatives
NWSCH1	Number of independent tours	Ordered probit	1, 2, 3, or 4
NWSCH2	Decision to undertake an independent tour before the pick-up or joint discretionary tour	Binary logit	Yes, No
NWSCH3	Decision to undertake an independent tour at the pick-up or joint discretionary tour	ter Binary logit	Yes, No
NWSCH4	Tour mode	MNL	Solo driver, Driver with passenger, Passenger, and Walk/bike
NWSCH5	Number of stops in a tour	Ordered probit	1, 2, 3 4, or 5
NWSCH6	Number of stops following a pick-up/drop-o stop in a tour	ff Ordered probit	0 or 1
NWSCH7	Home stay duration before a tour	Regression	Continuous time
NWSCH8	Activity type at stop	MNL	10 Activity purposes
NWSCH9	Activity duration at stop	Regression	Continuous time
NWSCH10	Travel time to stop	Regression	Continuous time
NWSCH11	Stop location	Spatial Location Choice	Choice alternatives based on estimated travel time

Children Scheduling Model System

CEMDAP

Model ID	Model Name	Econometric Structure	Choice Alternatives
CSCH1	School to home commute time	Regression	Continuous time
CSCH2	Home to school commute time	Regression	Continuous time
CSCH3	Mode for independent discretionary tour	Binary logit	Drive by other, Walk/bike
CSCH4	Departure time from home for independent discretionary tour (time from 3 a.m.)	Regression	Continuous time
CSCH5	Activity duration at independent discretionary stop	Regression	Continuous time
CSCH6	Travel time to independent discretionary stop	Regression	Continuous time
CSCH7	Location of independent discretionary stop	Spatial Location Choice	Predetermined subset of the 4,109 zones

Joint Discretionary Tour Scheduling Model System

CEMDAP

79

Model ID	Model Name	Econometric Structure	Choice Alternative
JASHCH01	Decision of Joint or Separate Travel	Binary Probit	Yes or No
JASHCH02	Joint Activity Start time	Regression	Continuous
JASHCH03	Joint Activity travel time to stop	Regression	Continuous
JASHCH04	Joint Activity location	Spatial Location Choice	Predetermined subset of the 4,109 zones
JASHCH05	Vehicle Used For Joint Home-Based Tour	MDCEV	Vehicle types based on body type and vintage

□ Joint activities of **workers** scheduled in work-to-home commute or After-work period

- Determined by the Joint Activity Start Time
- □ For **non-workers** participating in joint activities
 - Decision to undertake independent tour before pick-up or joint tour
 - Decision to undertake independent tour after pick-up or joint tour

CEMDAP Simulation Output

CEMDAP

80

CEMDAP produces complete activity-travel patterns for a day for every individual in the population of interest

- □ There are **nine** output files:
 - Adults: decisions to undertake activities of different types for adults
 - Children: decisions to undertake activities of different types for children
 - Workers: pattern-level attributes of the workers' (including adult students)
 - Students: pattern-level attributes of the child students
 - NoGo: list of people who stayed at-home the whole day
 - Non-workers: pattern-level attributes of non-workers
 - Tours: tour-level attributes
 - Stops: stop-level attributes
 - Activities: activity episode attributes

CEMDAP

Initial validation results

Average Number of Trips per Household

Type of Trips	SimAGENT	Survey	SimAGENT (85% Work Scenario)
Home Based Work	1.27	1.33	1.68
Home Based Non-work	5.13	4.90	4.94
Non-home based	2.31	2.59	2.69
Total	8.71	8.82	9.30

CEMDAP

Distribution of Number of Tours (Workers)

	Before Work		Work	Based	After Work	
Number of Tours	Survey	SimAGENT	Survey	SimAGENT	Survey	SimAGENT
0	94.26	96.69	81.03	76.67	79.48	81.36
1	5.74	3.31	16.59	18.01	17.86	17.17
2			2.38	5.32	2.66	1.47

83

CEMDAP

84

Distribution of Number of Tours (Non-Workers)

Number of Tours	Survey	SimAGENT
1	58.81	55.51
2	27.53	24.79
3	9.49	12.55
4	4.17	7.15

85

Average Number of Stops by Tour Type

Average number of stops	Survey	SimAGENT
	4 07	1.20
Work Based tours	1.3/	1.36
Before work tours	1.41	1.34
After work tours	1.40	1.36
Work-to-home commute	0.40	0.35
Home-to-work commute	0.26	0.18
Non-worker tour	1.78	1.66

	PopGen	CEMSELTS CEMDAP
		86
Chaining	Propensit	.V
	Survey	SimAGENT
Monteen		
Worker		
		0.86
Chaining Propensity	0.85	0.00
Non Worker		
Chaining Propensity	0.71	0.76

Tour Mode Shares

	Work-to-home		Work	based	Before work		After work		Non-Worker	
	ABM	Survey	ABM	Survey	ABM	Survey	ABM	Survey	ABM	Survey
Drive alone	77.7	78.2	64.2	69.3	56.5	44.0	55.0	56.2	51.9	39.8
Drive as passenger	8.9	9.8	15.9	13.8	26.2	39.1	35.3	31.7	28.8	36.7
Shared ride	8.1	6.6	6.0	6.3	4.0	2.5	3.9	5.1	12.2	14.1
Walk or bike	2.7	2.9	13.7	10.1	12.7	13.9	4.9	6.3	5.7	7.5
Transit	2.6	2.5	0.2	0.5	0.6	0.5	0.9	0.7	1.4	1.9

87

CEMDAP

Growth

Year 2 & later

Spatial Distribution People and Activities

CEMSELTS: For each person and household generated in PopGen, additional attributes are created here using econometric models, lookup tables, and consistency rules

Attributes added to each household and person: education, employment attributes (employed or not, work duration, work flexibility, work location, industry), driver's license holding, student status and school location, number of cars, etc.

Policy Sensitivity Illustration

Vehicle Type Choice Simulation Component

- Vehicle type choice determines vehicle fleet mix; critical to energy and emissions analysis
- SimAGENT incorporates joint vehicle type choice and primary driver allocation model which determines:
 - Multiple vehicle holdings
 - Body type (Sub-compact, Compact car, Mid-sized car, Large car, Small SUV, Mid-sized SUV, Large SUV, Van, and Pickup)
 - Age (Less than 2 years old, 2 to 3 years old, 4 to 5 years old, 6 to 9 years old, 10 to 12 years old, Older than 12 years)
 - Use (miles)
 - Primary driver of each vehicle, simultaneously

Multimodal Capabilities

- SimAGENT incorporates full multimodal capabilities
- Explicit consideration of non-motorized transportation mode use for both utilitarian and recreational purposes
- Focus on <u>both</u> the <u>person</u> and the <u>vehicle</u>

Other Salient Features of SimAGENT

Temporal Resolution

- Continuous time scale
- Level-of-service data can be provided at any temporal resolution
- Explicitly considers time-space interactions/constraints
- Enables consideration of time-varying and dynamic pricing policies

Spatial Resolution

• Allows for any spatial resolution, and multi-scale spatial resolution.

Activity Resolution

• Allows for any purpose resolution, and multiple resolution

Graphical User Interface

- Standard Windows-based user interface
- Allows user to modify model parameters
- Provides a friendly diagrammatic interface to help the user understand the logic of the system and the underlying models

Sample SimAGENT Output: Daily activity-travel undertaken by a household

GEOLOCATED ACTIVITIES

Time-Space Prims

Seo Youn Yoon artwork!

99

Dynamic Opportunity-based Accessibility is Key Input

Transit Accessibility

- 60 meters / min walking speed
- 6 min penalty for switching transit lines
- Max time set at 3 hours
- Sparse distance matrix in output
 - Do not report if > 3 hours

Access Points to Public Transportation

Walk Time Isochrones Example

Transit Travel Time Isochrones Example

Manufacturing: maximum accessible employees within 10 mins

Retail: maximum accessible employees within 10 mins

Finance: maximum accessible employees within 10 mins

4000 to 5000 5000 to 10000 10000 to 100000 Miles

2500 to 3000

3500 to 4000

1.5

3500 to 4000

5000 to 10000

1.5

4000 to 5000

10000 to 100000

2000 to 2500

3000 to 3500
Time of day profiles key in Activity-based models (note the different versions and survey versions)

Clearly faulty time of day profiles!!!!

109

Time of day profiles key in Activity-based models (note the different versions and survey versions) After fixing minor code details!

Number of Trips by time of day

110

Presence of Persons at Places by Type of Activity

Presence of Persons at Places by Type of Activity

Comparison with 2008 4-step model

Emissions and Fuel Consumption	4-Step	SimAGENT
	Model*	Baseline*
Organic Gases (g/mile)	0.943	0.926
CO (g/mile)	9.498	9.348
NOx (g/mile)	1.929	1.955
CO2 (g/mile)	561.340	543.545
Gasoline (gallons/mile)	0.051	0.050
Gasoline (mile/ gallons)	19.377	20.203
Diesel (gallons/mile)	0.102	0.101
Diesel (mile /gallons)	9.833	9.893
Organic Gases (g/person-day)	22.291	21.333
CO (g/person-day)	224.553	215.388
NOx (g/person-day)	45.606	45.050
CO2 (g/person-day)	13271.790	12524.452
Vehicle Miles Travel/person-day	23.643	23.042

113

Screenline Counts Comparison

114

Sample of Scenarios Tested

Difference between GC Baseline and Drive Alone Cost Increase 100%

	ROG	СО	NOx	CO2
L+MDV	-1.85%	-1.83%	-1.74%	-1.97%
HDT	-0.19%	-0.15%	0.06%	-0.08%
Other	0.00%	0.00%	0.00%	0.00%
TOTAL	-1.55%	-1.57%	-0.67%	-1.58%

Difference between GC Baseline and Auto Cost Increase 100%

L+MDV	-0.98%	-0.96%	-0.90%	-1.06%
HDT	-0.12%	-0.09%	0.01%	-0.05%
Other	0.00%	0.00%	0.00%	0.00%
TOTAL	-0.83%	-0.83%	-0.36%	-0.85%

Difference between GC Baseline and DA IVTT increase 25%

L+MDV	-11.60%	-11.41%	-11.16%	-11.90%
HDT	-0.67%	-0.39%	0.67%	-0.21%
Other	0.00%	0.00%	0.00%	0.00%
TOTAL	-9.67%	-9.74%	-4.13%	-9.47%

Difference between GC Baseline and Auto IVTT Increase 25%

L+MDV	-11.53%	-11.35%	-11.09%	-11.83%
HDT	-0.66%	-0.38%	0.66%	-0.20%
Other	0.00%	0.00%	0.00%	0.00%
TOTAL	-9.61%	-9.68%	-4.11%	-9.41%

Figure 6: Travel Plans for Households 74 and 468

Example output from TRANSIMS

Router & Router Feedback

TRANSIMS Router & Feedback Main Processing Flow

Volume on Network

Volume on Network

Second by second emissions and fuel consumption

144
Table X Example of TRANSIMS Vehicle Trajectory Merged with CMEM Emissions

VEHICLE_ID	SPEED	HC	СО	NOX	FUEL	CO2	ACCEL	LINK	DIR	LANE	OFFSET	VEH_TYPE	DRIVER	PASSENGERS
11305071	25	0.000082	0.000155	0	0.375458	1.190549	0	107661	0	3	725	4	1132	0
11305071	20	0	0.000063	0	0.231856	0.735419	-5	107661	0	3	745	4	1132	0
11305071	20	0.000068	0.000101	0	0.29839	0.946199	0	107661	0	3	765	4	1132	0
11305071	25	0.000739	0.009735	0.015031	3.196576	10.12274	5	107661	0	3	790	4	1132	0
11305071	5	0	0.000063	0	0.231856	0.735419	-20	107661	0	3	795	4	1132	0
11305071	10	0.00045	0.004289	0.005936	2.102081	6.660199	5	107661	0	3	805	4	1132	0
11305071	0	0	0.000063	0	0.231856	0.735419	-10	107661	0	3	805	4	1132	0
11305071	0	0.000056	0.000063	0	0.231856	0.735228	0	107661	0	3	805	4	1132	0
11305071	0	0.000056	0.000063	0	0.231856	0.735228	0	107661	0	3	805	4	1132	0
11305071	5	0.000406	0.003592	0.00482	1.91963	6.082653	5	107661	0	3	810	4	1132	0
11305071	10	0.00045	0.004289	0.005936	2.102081	6.660199	5	107661	0	3	820	4	1132	0
11305071	15	0.00052	0.005486	0.007883	2.383786	7.551737	5	106918	0	2	10	4	1132	0
11305071	15	0.000072	0.000115	0	0.321168	1.018419	0	106918	0	2	25	4	1132	0
11305071	20	0.000614	0.007223	0.010771	2.743976	8.691325	5	106918	0	2	45	4	1132	0
11305071	25	0.000739	0.009735	0.015031	3.196576	10.12274	5	106918	0	2	70	4	1132	0

X-axis is second by second of a vehicle

Grams per vehicle in one second

147

Activities to Business Locations

Activity Location and Business Location Distribution

VMT of households in parcels of land

VMT=vehicle miles travelled

Easily by time of day and person of household

Illustration of the Modifiable Area Unit Problem

In Closing

- This is still not enough!
- Business Establishments spatial distribution of opportunities, time of day availability, commodity flows and trucks/commercial vehicles
 - Firmographics to parallel Demographics
- Deliveries to households (UPS/FEDEX, DHL, Postal, Gardeners, Maintenance)
- See recent supply chain simulation models

Some Publications

1. Goulias K.G., C. R.Bhat, R.M. Pendyala, Y. Chen, R. Paleti, K. Konduri, G. Huang, and H. Hu (2012) Simulator of Activities, Greenhouse Emissions, Networks, and Travel (SimAGENT) in Southern California. Paper 12-0845 presented at the January 2012 91st Annual Meeting of the Transportation Research Board, Washington, D.C., January 22-26, 2012.

2. Lei T., Y. Chen, and K. G. Goulias (2012) Opportunity-Based Dynamic Transit Accessibility in Southern California: Measurement, Findings, and Comparison with Automobile Accessibility. Paper 12-3813 presented at the January 2012 91st Annual Meeting of the Transportation Research Board, Washington, D.C., January 22-26, 2012. (in press)

3. Bhat C. R., K.G. Goulias, R.M. Pendyala, R. Paleti, R. Sidhartan, L. Schmitt, and H. Hu (2012) A Household-Level Activity Pattern Generation Model: Simulator of Activities, Greenhouse Emissions, Networks, and Travel (SimAGENT) System in Southern California. Paper 12-4226 presented at the 91st Annual Meeting of the Transportation Research Board, Washington, D.C., January 22-26, 2012.

4. Vyas G., R. Paleti, C.R. Bhat, K.G. Goulias, R. M. Pendyala, H. Hu, T. J. Adler, A. Bahreinian (2012) A Joint Vehicle Holdings (Type and Vintage) and Primary Driver Assignment Model with an Application for California. Paper 12-3701 presented at the 91st Annual Meeting of the Transportation Research Board, Washington, D.C., January 22-26, 2012. (in press)

5. Seraj S., R. Sifhartan, C.R. Bhat, R.M. Pendyala, and K.G. Goulias (2012) Parental Attitudes Toward Children Walking and Bicycling to School: Multivariate Ordered Response Analysis. Paper 12-3675 presented at the 91st Annual Meeting of the Transportation Research Board, Washington, D.C., January 22-26, 2012. (in press)

6. Pendyala R.M., C.R. Bhat, K.G. Goulias, R. Paleti, K.C. Konduri, E. Sidhartan, H. Hu, G. Huang, and K. P. Christian (2012) The Application of Socioeconomic Model System for Activity-Based Modeling: Experience from Southern California Paper 12-2186 presented at the 91st Annual Meeting of the Transportation Research Board, Washington, D.C., January 22-26, 2012.

7. Goulias K.G., C. R. Bhat, R. M. Pendyala, Y. Chen, R. Paleti, K. C. Konduri, G. Huang, and H. Hu (2011) Simulator of Activities, Greenhouse Emissions, Networks, and Travel (SimAGENT) in Southern California: Design, Implementation, Preliminary Findings, and Integration Plans. Paper in proceedings of the Institute of Electrical and Electronics Engineers (IEEE) Forum on Integrated and Sustainable Transportation System, Vienna, Austria, June 29 to July 1, 2011, pp. 164-169.

8. Goulias K.G., R.M. Pendyala, and C.R. Bhat (2011) Total Design Data Needs for the New Generation Large Scale Activity Microsimulation Models. Keynote paper presented at the plenary of the 9th International Conference on Travel Survey Methods, Chile, Nov. 14-18, 2011

9. Chen, Y., S. Ravulaparthy, K. Deutsch, P. Dalal, S.Y. Yoon, T. Lei, K.G. Goulias, R.M. Pendyala, C.R. Bhat, and H-H. Hu (2011) Development of Indicators of Opportunity-based Accessibility. *Transportation Research Record: Journal of the Transportation Research Board, No.* 2255, Transportation Research Board of the National Academies, Washington D.C., 2011, pp.58-68.

10. Paleti, R., N. Eluru, C.R. Bhat, R.M. Pendyala, T.J. Adler, and K.G. Goulias (2011) <u>The Design of a Comprehensive Microsimulator</u> <u>of Household Vehicle Fleet Composition, Utilization, and Evolution.</u> *Transportation Research Record: Journal of the Transportation Research Board*, No. 2254, Transportation Research Board of the National Academies, Washington D.C., 2011, pp.44-57.

11. Sidharthan, R., C.R. Bhat, R.M. Pendyala, and K.G. Goulias (2011) Model of Children's School Travel Mode Choice Behavior Accounting for Effects of Spatial and Social Interaction. *Transportation Research Record: Journal of the Transportation Research Board, No. 2213, Transportation Research Board of the National Academies, Washington D.C., 2011, pp.78-86.*

Reports (http://www.scag.ca.gov/modeling/)

- Goulias, K.G., C. R. Bhat, R. M. Pendyala, Y. Chen, R. Paleti, K. Konduri, S. Y. Yoon, and D. Tang (2012). Simulator of Activities, Greenhouse Emissions, Networks, and Travel (SimAGENT) in Southern California. SimAGENT Overview. Phase 2 Final Report 1 Submitted to SCAG, March 31, 2012, Santa Barbara, CA.
- Goulias, K.G., C. R. Bhat, R.M. Pendyala, Y. Chen, T. Lei, S. Ravulaparthy, K. Deutsch, P. Dalal, and S. Y. Yoon (2012). Opportunity-Based Dynamic Accessibility Indicators in SimAGENT Phase 2 Final Report 2 Submitted to SCAG, March 31, 2012, Santa Barbara, CA.
- Pendyala, R.M., C. R. Bhat, K. G. Goulias, R. Paleti, K. Konduri, R. Sidharthan, and K. P. Christian. (2012) SimAGENT Population Synthesis. Phase 2 Final Report 3 Submitted to SCAG, March 31, 2012, Santa Barbara, CA.
- Bhat, C. R., R. Paleti, R. M. Pendyala, and K. G. Goulias. (2012) SimAGENT Activity-Based Travel Demand Analysis: Framework, Behavioral Models, and Application Results. SimAGENT Core Models. Phase 2 Final Report 4 Submitted to SCAG, March 31, 2012, Santa Barbara, CA.
- Goulias, K. G., N. A. Isbell, D. Tang, M. Balmer, Y. Chen, C. R. Bhat, and R. M. Pendyala (2012) TRANSIMS and MATSIM Experiments in SimAGENT. Phase 2 Final Report 5 Submitted to SCAG, March 31, 2012, Santa Barbara, CA.

Thank you!

Domo Arigatou Gozaimasu どうも 有難う 御座います

Data Needs

• Core Behavior and Household Characteristics

- Other aspects policy dependent (cars and costs, long term choices and lifestyle, attitudes)
- Other agents (firms, institutions, plans, and so forth)
- Landscape/Environment/Context
 - Activity locations
 - Homes/Jobs/Schools
 - Availability over time

Figure 4 The Data Collection Overall Scheme

One Week Activity and Travel Diary

- Account for day-to-day variation in activity scheduling and travel and attempt to
- Identify shifting of tasks and activities from one day of the week to the next.
- Design to capture the behavioral processes of scheduling activities, and planning and subsequent re-scheduling modifications (see the Toronto tradition).

Toll Willingness to Pay

- Attitudes and willingness to pay for tolls on highways
- Develop behavioral equations of the willingness to pay
- Large scale regional simulation models to develop pricing strategies

(Bhat and Castellar, 2002; Bhat and Sardesai, 2006).

GPS and GPS OBD

- Develop a database to correlate destinations to routes and identify a typology of different types of routes and stop making patterns;
- Develop a route choice model;
- Estimate the level and nature of misreported trips by different modes of the main two-day activity diary;
- Verify day-to-day behavioral change in other survey components and day of the week effects; and
- Provide detailed operating characteristics of the household vehicles.
- NOTE: This component for persons carrying GPS devices (wearable GPS) can also be supplemented with an online diary and vehiclemounted GPS (week long to capture day to day variation) and
- On-Board Diagnostics devices (to identify driving patterns and correlate/link them with emissions models).

Mode Supplement

- <u>R</u>easons for not using specific modes, including non-motorized modes for active living studies.
- The survey objective is to identify situational constraints, attitudes, and predispositions in favor or against modes such as walk, bike and public transportation.
- Create models to study policy actions that go beyond the time-cost-comfort analysis.
- Add a stated choice, intentions, and preference component to this module.
- Emphasis on collecting data about walking and biking either as a main mode for each trip or as an access mode to another main mode (e.g., walking from a parking lot to an office, biking to a bus stop and then taking the bus).

Residence, Workplace, and School Location Choice:

170

- Critical survey component for behaviorally integrated land use travel demand models!
- In-depth survey to identify the determinants for each of the residential, workplace, and school choices (see Kortum et al., 2012).
- Both primary locations and secondary locations should be examined in more detail than typical household surveys and data collected to estimate choice models for each facet.
- Examine behavior retrospectively and prospectively.
- Possibly add questions about personal biography of each household member using techniques that are not used by typical household surveys (e.g., ethnography).

In Depth Car Ownership Change and Car Assignment

- Identify the determinants for each of the car ownership, car type (e.g., new/used, model, make, and fuel type), and car assignment decisions.
- In the car assignment data collection, both the primary and secondary drivers should be identified.
- Identify determinants of changes in car ownership, type, and assignment of cars to household members.
- Particular emphasis should be given to policy controlled determinants (e.g., taxation, incentives). One approach to study this latter part is using combinations of revealed and stated preference surveys.

Activity Satisfaction Survey

- Provide a benchmark for the diary instrument; and
- Create an assessment of activities (including trips) and subjective experiences that is able to capture preferences, satisfaction, and perceived quality of life.
- This second set of objectives will enable estimation of choice models with latent variables and classes that are by far richer and more informative than their counterpart observed variable discrete choice models (see the "happiness literature").

Destinations & Perceptions

- We know that places have symbolic and other meanings that travel behavior models neglect.
- This component identifies how destinations are perceived and what role these perceptions play in their selection.
- Major aspects = mental maps and sense of place

Panel of Households and Persons and Multi-Day Activity

- Undecided: would like a Mobidrive (6 weeks)
- Would also like year to year evolutionary measurement
- Most likely a rotating panel of longer than one week duration

Energy Use and Expenditures

- Link housing to transportation demand.
- Develop more complete household Greenhouse footprints
- Develop models of comprehensive accounting of energy demand.
 - Annual, monthly, or even weekly expenditures for activity participation, travel, and vehicles and housing units maintenance ownership and energy consumption are not collected in typical travel surveys.
 - This component will provide the data needed to enable a direct association between travel and at home energy consumption to eventually create models of the type in Fissore et al. (2011).

Carbon, Nitrogen, Phosphorous by Households/Housing Unit

176

Long Distance Travel

- Travel models in Mega regions and statewide applications also need models that are able to capture what is called interregional travel and long-distance travel.
- Many of the trips in this class are business related, leisure related, or simply long commutes.
- Maybe also study trade-offs people make when they engage in travel that, for example, requires an overnight stay outside the home base.

CEMSELTS EVOLUTION

Overview of Evolution Framework

Individual Level Evolution Models

Household Formation Models

Vehicle Evolution Framework

CEMSELTS Evolution Module: Individual Models

SI. Num.	Model Description	Model Type	Current Data Source	Comment			
Individual Models: Demographics & Mobility							
1	Mortality Model	Binary Logit	California Department of Public Health				
2	Birth Model	Binary Logit	California Department of Public Health				
3	Base Year License Model	Binary Logit	FHWA				
4	Obtain License Model	Binary Logit	Highway Statistics 2010 FHWA (California)				
5	Maintain License Model	Binary Logit	Rule Based				
Individual Models: Schooling Models							
6	School location model	Multinomial Logit	SCAG Survey 2003				
7	College location model	Multinomial Logit	SCAG Survey 2003				
8	Base Year Dropout Rate Model	Binary Logit	SCAG Survey 2003				
9	Base Year Education Attainment Model	Multinomial Logit	SCAG Survey 2003				
Individual Models: Employment Models							
10	Labor Participation Model	Binary Logit	SCAG Survey 2003				
11	Start Employment Model	Binary Logit	SCAG Survey 2003				
12	Employment Industry Model	Multinomial Logit	SCAG Survey 2003				
13	Work Flexibility Model	Ordered Probit	SCAG Survey 2003				
14	Work Duration Model	Multinomial Logit	SCAG Survey 2003				
15	Continue Employment Model	Multinomial Logit	Bureau of Labor Statistics 2012	Currently a very simple constants only model is used. It is preferable to have a more comprehensive model based on survey data.			
16	Household Income Model	Ordered Probit	SCAG Survey 2003				
17	Work location model	Multinomial Logit	SCAG Survey 2003				

CEMSELTS Evolution Module: Household Formation Models

Sl. Num.	Model Description	Model Type	Current Data Source	Comment
18	Marriage Model	Binary Logit	National Survey of Family Growth - CDC (2006-2010)	
19	Divorce Model	Binary Logit	National Survey of Family Growth - CDC (2006-2010)	
20	Child Custody Model		No Data	Need data to estimate model
21	Resource allocation Model		No Data	Need data to estimate model
22	Move In Model	Binary Logit	No Data	Need data to estimate model - ignoring the move-in process can potentially lead to over-estimation of single person households.
23	Husbands Age Model	Multinomial Logit	National Survey of Family Growth - CDC (2006-2010)	
24	Move In Age Model	Multinomial Logit	No Data	Same as Move-in model
25	Move out Model	Multinomial Logit	Pew Research Center 2011	Currently a very simple constants only model is used. It is preferable to have a more comprehensive model based on survey data.
26	Move In Gender Model	Binary Logit	No Data	Same as Move-in model
27	Husbands Race Model	Multinomial Logit	National Survey of Family Growth - CDC (2006-2010)	
28	Husbands Educ Attainment Model	Multinomial Logit	National Survey of Family Growth - CDC (2006-2010)	

CEMSELTS Evolution Module: Householdlevel long term choice models

29	Residential Mobility Model	Binary Logit	Rate based model (using data from London, UK)	We need data specific to LA (or California)
30	Residential Tenure Model	Binary Logit	SCAG Survey 2003	
31	Housing Type for Owners Model	Multinomial Logit	SCAG Survey 2003	
32	Housing Type for Renters Model	Multinomial Logit	SCAG Survey 2003	
33	Vehicle Type Choice and Vehicle Transaction Models	MDCEV, Binary logit models	CEC Data	
34	Residential location model	Multinomial Logit	SCAG Survey 2003	
35	Emigration Model	Binary Logit	US Census Bureau 2009	We currently have a simple rate based model to predict net immigration rate (Immigration rate- Emigration rate). It is preferable to have a more comprehensive model based on household demographics for both emigration and immigration.
36	Immigration Model for non- single households	Binary Logit	US Census Bureau 2009	
37	Immigration Model for single households	Binary Logit	US Census Bureau 2009	