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Introduction 

Activity-Based Models (ABM) are disaggregate 
models that simulate individual decisions as random 
draw from choice sets, thus inserting random 
component to the results of model run. 

The Tel Aviv ABM structure is similar to other activity 
based models described in the literature. 

The model run is supposed to converge to the 
equilibrium between generated tours and 
corresponding level of service (LOS) data.  
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Goals of current study 

Experience of working with Tel Aviv ABM has 
revealed the need in conducting comprehensive 
analysis of the randomness of the model results, and 
in developing practical methods for the model 
stability monitoring and control. 

Therefore, the goals of the current study are: 

– Analyze sources of randomness and their influence on 
model results 

– Produce practical recommendations for correct use of 
the ABM 

3 



Literature Review 

Rasouli and Timmermans (2012) presented a review 
of uncertainty in travel demand forecasting models. 

Veldhuisen et al. (2000): effect of Monte Carlo draws 
on regional aggregate activity patterns  

Castiglione et al. (2003): variability of the forecasts 
due to random simulation error 

Bowman et al. (2006): techniques to establish 
convergence based on MSA 

Vovsha et al. (2008): discussion of practical ways to 
reach equilibrium within an activity-based model 

Cools et al. (2011): uncertainty related to the 
statistical distributions of random components 
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Tel Aviv Metropolitan Area 



Tel Aviv Model  
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Main Modes: car driver, car 
passenger, taxi, bus, rail, Mass 
Transit (BRT/LRT) 

About 1,000 Transit lines 

1,219 Traffic Analysis Zones 

About 1,500 Km2 and 
 3.3 million habitants in 2009 

Access modes: walk, transit, 
Park&Ride, Kiss&Ride 

About 10,000 regular links 



Tel Aviv Model  
(structure and implementation) 
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Results 

POPULATION  
GENERATOR 

List of  
Persons 

TOUR  
GENERATOR 

Level of 
Service 

TRIP 
ASSIGNMENTS 

OD 
Matrices 

Initial  
Demand 

Implementation features 
 
Disk space: 4 GB per project + 
3GB common space 
 
Memory required: 2GB 
 
PG: stand alone application 
 
TG: Special C# application 
 
Assignments: Parallel work 
with 3 EMME banks on single 
PC 
 
Run time: 40 min per 
iteration, 10% population 
sample, Intel i7 Quad 
processor 



Model Structure 

The hierarchy of the models is fixed and the general 
model structure is similar to the Bowman and Ben-
Akiva (2001) approach. 

The results from these models are translated into O-
D travel matrices that are assigned to the network.  

For details on the model application, see Bekhor et 
al. (2011) and Shiftan et al. (2003). 

The following slide shows the main components of 
the Tour Generator. 
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Main Activity 

Work Education Shopping Other No tour 

Time Period (15 alternatives) 

Destination of the Main Activity (1219 alternatives) 

Zone 1 Zone 2 Zone 3 … Zone 1219 

Mode of the Main Activity (14 alternatives) 

Car Driver Car Passenger Taxi Bus Rail LRT / BRT 

P&R, K&R, Walk P&R, K&R, Walk, Bus 

Intermediate Stops 

No stops Before the main activity Before and After After the main activity 

TOUR  
GENERATOR 



Errors/randomness sources 

There are three major model elements where the 
randomness or inaccuracy may occur: 
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Randomly chosen persons 

 

 
Random choice of tour attributes  

 

 
Assignment accuracy 

 

Results 
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Error sources to address 

 

Assignment accuracy 

 

 

Tour Generator random component 

 

 

Population sampling 
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TRIP 
ASSIGNMENTS 

TOUR  
GENERATOR 
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Assignment errors 

Three variants of traffic assignment implementation 
were compared: 

– Standard Frank-Wolfe algorithm (FW) 

– Frank-Wolfe algorithm with parallel computation 
(FWP) 

– Path-based traffic assignment (PBTA) 

 

The implementation accuracy was evaluated using 
distribution of errors in link segments.  

This measure is convenient for evaluation and 
comparison of errors of different nature. 
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Assignment results: Distribution of link 
volumes 

• Number of links: 10900 
• Average volume: 967 veh/hr 
• Amount of links with volume 

higher than 80 veh/hr: 90% 
 TRIP 

ASSIGNMENTS 
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Assignment results: convergence 

14 

Frank-Wolfe Path-Based 
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Assignment results: run times  
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Assignment errors: conclusions 

The analysis of the assignment implementations has 
shown that usage of path-based algorithm may 
practically eliminate the assignment error. 

The time savings of the PB algorithm is further 
expanded due to extensive use of path analysis 
allowing to obtain various characteristics of 
assignment results very fast. 

 The FW and FWP algorithms require conducting 
additional time consuming assignments. 

 

TRIP 
ASSIGNMENTS 
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Tour Generator random component 

TOUR  
GENERATOR 
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Tour Generator - Simulation error 

The starting point of the analysis is the demand 
matrices that result from the TG component. 

According to the flowchart presented in the previous 
slide, the individual random choices are aggregated 
to form the demand matrices. 

There are over 30 demand matrices generated by the 
model for different modes and periods of day. 

To analyse the TG randomness effects, we consider 
the car demand matrix for the AM period. 
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The demand matrices are random 

The random draw of choices for each person in a 
sample (Activity, Destination, Period of Day, Mode, 
etc.) results in random matrices, for example: 

 

 

 

 

 

Although the overall distribution of trips in the matrix 
is quite stable, there are considerable changes at the 
cell level. 

1506 1509 1601 1602 1605 1903 1921

1105 10 10 10 10 20 0 20

1106 0 0 0 0 10 0 0

1107 0 0 10 0 0 0 20

1108 0 10 10 10 20 0 0

1109 0 0 20 0 20 0 0

Destination

O
ri

gi
n

1506 1509 1601 1602 1605 1903 1921

1105 0 0 0 0 10 10 10

1106 0 0 10 0 30 0 0

1107 0 0 0 0 10 10 10

1108 0 0 0 10 10 20 10

1109 10 10 0 0 10 0 0

O
ri

gi
n

Destination

Car demand, Iteration n Car demand, Iteration n+1 

TOUR  
GENERATOR 
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Distribution of trips in the car demand 
matrix for different iterations 
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Sparseness of demand matrices  

Parameter Average 
Standard 

Deviation 

Total matrix cells (1219 * 1219) 1,485,961 (100%) 

Total non-empty matrix cells 270,101 (18%) 403 

Total matrix cells with one trip 150,362 (10%) 382 

Total non-empty cells in iteration (n), 

corresponding to empty cells in 

iteration (n+1) 

117,068 (8%) 364 

Total cells with one trip in iteration 

(n), corresponding to empty cells in 

iteration (n+1) 

93,152 (6%) 346 
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Distribution of OD time differences 
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Averaging methods 

Different averaging methods can be used to stabilize 
the model run results. 

We consider 3 averaging methods, which are 
respectively presented in the following slides: 

“MSA-R”: 

–  𝑉𝐻𝑇 𝑎
(𝑛+1)
=
𝑉𝐻𝑇 𝑎
(𝑛)

𝑛+1
+ 1 −

1

𝑛+1
𝑉𝐻𝑇𝑎
(𝑛+1)

 

“MSA-M”:  

– 𝑇 𝑂𝐷
𝑛+1
=
𝑇 𝑂𝐷
𝑛

𝑛+1
+ 1 −

1

𝑛+1
𝑇𝑂𝐷
𝑛+1

 

“Quasi-Aggregation”: 

– 𝑇 𝑂𝐷
𝑛+1
=
𝑇 𝑂𝐷
𝑛

𝑛+1
+ 1 −

1

𝑛+1

1

𝐾
 𝑇𝐾𝑘=1

𝑂𝐷

𝑛+1,𝑘
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MSA-R method 
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MSA-M method 
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“Quasi-aggregation” method 
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Convergence of averaging procedures 

Averaging 

procedure 

Number of 

iterations 

Standard Deviation of 

VHT at last iteration 

(computed for 3 runs) 

Average deviation of last 

iteration VHT from 

global average 

MSA-R 20 120 -33 

MSA-M 20 140 -9 

Quasi-

Aggregation 

16 

(6 inner 

each) 

35 43 
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TOUR  
GENERATOR 

• The convergence rate of all procedures follows the “ 𝑛” rule of thumb: 

• For MSA-R and MSA-M the VHT standard deviation decreases from the 

original 420 to 120-140 after 20 iterations, that is comparable to the 

expected 420/ 20 = 93.9; 
• The resulting VHT standard deviation of 35 for Quasi-aggregate 

procedure after 16 iterations with 6 inner iterations each is even closer 

to 420 / 16 × 6 = 42.8 . 



Convergence of averaging procedures 
as a function of run time 
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Tour Generator (conclusions) 

All three arrangements of model run with averaging 
results converge similarly. 

Note that the MSA-M procedure requires more time 
for assignments than MSA-R, since for path-based 
assignment used the run time depends on number of 
non-zero cells in demand matrix, and in MSA-M 
procedure the number of such cells increases with 
the iterations, whereas in MSA-R this number is 
almost constant. 

Further, Quasi-aggregate procedure has different 
proportion between number of TG runs and number 
of assignment runs, depending on amount of inner 
iterations. 

TOUR  
GENERATOR 
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Population Generator random 
component 

PG generates list of individuals with random 
characteristics based on forecast of aggregate control 
variables.  

In addition, in order to accelerate the model’s run, a 
sample from the full population is often used. 

– In this case, a sample is taken randomly, and trips of 
each person in a sample take proper weight to assure 
correct total number of trips in a system. 

In this presentation only errors related to the 
population sampling will be addressed. 

POPULATION  
GENERATOR 
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Effect of Sampling: Model Convergence 

POPULATION  
GENERATOR 
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Effect of Sampling: Model Convergence 
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Convergence of ABM for different 
sample sizes 

Sample 

size s 

Average 

VHT 

Standard deviation of VHT 

variations 

Standard deviation after 

20 iterations 

Observed Theoretical 

σ100%/ 𝒔 

Observed Theoretical 

σ/ 𝟐𝟎 

100% 174,700 420 420 120 92.9 

50% 176,150 650 594 160 145.3 

10% 180,320 1,250 1,330 250 279.5 

POPULATION  
GENERATOR 

The results indicate that the “ 𝑛” rule of thumb works both for the 

number of iterations and for the sampling rate.  
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Variations of VHT for different 
population sample size 
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Population Generator - conclusions 
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POPULATION  
GENERATOR 

The sample size affects the stationary point of ABM 
results.  

In addition, population sampling does not bring any 
significant savings in number of iterations, if the goal 
is to assure certain accuracy of ABM results.  

This is because the sampling would require more 
iterations to converge to the same accuracy in 
comparison to the full sample. 



Conclusions 

Three sources of the ABM results instability were 
analyzed: random population sampling, random tour 
generation, and assignment procedures. 

In line with previous studies, the effect of assignment 
procedures may be practically eliminated when using 
path based assignment algorithms. 

The effect of randomness of tour generation may be 
decreased significantly by averaging the results of 
model run.  

The analysis of ABM stability allows developing 
practical measures for performing estimation of 
transportation projects with  controlled accuracy 
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Further research 

Population sampling increases the efficiency of the model 
run, but the relationship between model steady states 
with different samples required further analysis. 

 

Two major issues emerged from the presented work: 

 

Analysis of the ABM steady states 

 

More profound study of errors related to Population 
generator: uncertainty of synthetic population created 
from limited set of aggregate control variables 

 
37 


