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Introduction
• This lecture introduces advanced discrete 

choice models, including
– advanced closed-form models, and 
– advanced open-form models

• Understanding such advanced models are 
important not only for utilizing advanced 
models, but also for understanding the 
limitations of conventional models
– Advanced models are often costly 

(computational cost, etc.), but need to be 
understood even when the conventional models 
are just applied
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Genealogy of discrete choice models
[based on Hato (2002)]
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Multinomial logit (MNL)
(Luce, 1959)

Multinomial Probit (MNP)
(Thurstone, 1927)

Nested logit (NL)
(Ben-Akiva, 1973)

Generalized extreme value (GEV)
(McFadden, 1978)

Paired combinational 
logit (PCL) (Chu, 1981)

Cross-nested logit 
(CNL) (Vovsha, 1997)

Generalized nested logit (GNL), recursive nested 
logit extreme value model (RNEV), network-GEV
(Wen & Koppelman, 2001; Daly, 2001; Bierlaire, 2002)

Error component logit (ECL); Mixed 
logit (MXL); Kernel logit (KL); 

Heteroscedastic logit (HL)
(Boyd and Mellman, 1980; Cardell and 
Dunbar, 1980; McFadden, 1989; Bhat, 

1995; See Train (2009) for details)

Normal to Gumbel

Generalization

Generalization

Generalization

Special case

Heteroscedastic/mixed distributions

Derived  from  McFaddenʼ’s  G  function or  “choice  
probability  generating  functions”  (Fosgerau et al., 2013)

Generalization

Multinomial weibit (MNW)
(Castillo, et al., 2008)

Gumbel 
to Weibull q-generalized logit

(Nakayama, 2013)

Variance 
stabilization

(Li, 2011)

Generalized G function
(Mattsson et al., 2014)

Generalization

Derived from the generalized G function

Weibull to GEV (not MEV)

Models without specifying error distributions

Closed-form models
Open-form models



Closed-form 
discrete choice models



G FUNCTION & SOME EXAMPLES
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McFaddenʼ’s  G  function
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The properties that the 𝐺 function must exhibit
① 𝐺 𝑦ଵ, 𝑦ଶ, … , 𝑦 ≥ 0

② 𝐺 is homogeneous of degree 𝑚：𝐺 𝛼𝑦ଵ, … , 𝛼𝑦 = 𝛼𝐺 𝑦ଵ, … , 𝑦

③ lim
௬ೕ→ஶ

𝐺 𝑦ଵ, 𝑦ଶ, … , 𝑦 = ∞ for any 𝑗

④ The cross partial derivatives of 𝐺 satisfy:

−1  ȉ
డೖீ ௬భ,௬మ,…,௬
డ௬భడ௬మ⋯డ௬ೖ

≥ 0

When all conditions are satisfied, the choice probability can be defined as:

𝑃 =
𝑒ೕ ȉ 𝐺 𝑒భ, 𝑒మ, … , 𝑒

𝐺 𝑒భ, 𝑒మ, … , 𝑒

𝐹(𝜖ଵ, … , 𝜖) = exp{−𝐺(𝑒ିఢభ, … , 𝑒ିఢ)}Assumption:

(where, 𝐺 = 𝜕𝐺/𝜕𝑌)

(McFadden, 1978)



Derivation of G function
Suppose 𝑢 = 𝑉 + 𝜖, where (𝜖ଵ, … , 𝜖) is distributed 𝐹 defined as:

𝐹(𝜖ଵ, … , 𝜖) = exp{−𝐺(𝑒ିఢభ, … , 𝑒ିఢ)}

Then, the probability of the first alternative 𝑃ଵ satisfies:

𝑃ଵ = න
ఢୀିஶ

ାஶ

𝐹ଵ 𝜖, 𝑉ଵ − 𝑉ଶ + 𝜖, … , 𝑉ଵ − 𝑉 + 𝜖 𝑑𝜖

= න
ఢୀିஶ

ାஶ
𝑒ିఢ𝐺ଵ 𝑒ିఢ, 𝑒ିఢିభାమ, … , 𝑒ିఢିభା

× exp −𝐺 𝑒ିఢ, 𝑒ିఢିభାమ, … , 𝑒ିఢభିభା
𝑑𝜖

= න
ఢୀିஶ

ାஶ
𝑒ିఢ𝐺ଵ 𝑒భ, 𝑒మ, … , 𝑒

× exp −𝑒ିఢ𝑒ିభ𝐺 𝑒భ, 𝑒మ, … , 𝑒
𝑑𝜖

=
𝑒భ𝐺ଵ 𝑒భ, 𝑒మ, … , 𝑒

𝐺 𝑒భ, 𝑒మ, … , 𝑒

8

multivariate extreme value (MEV) distribution (NOT GEV)

Uses the linear homogeneity



Some examples
G function Choice probability

Logit
𝐺 = Σୀଵ

 𝑦 𝑃 =
exp 𝑉

Σᇱୀଵ
 exp 𝑉ᇱ

Nested logit
𝐺 = Σୀଵ Σ∈𝑦

ଵ/ఒ
ఒ 𝑃 =

𝑒ೕ/ఒೖ Σ∈ೖ𝑒
ೕ/ఒ ఒೖିଵ

Σୀଵ Σ∈ೖ𝑒
ೕ/ఒ ఒ

Paired
combinational 
logit 𝐺 = Σୀଵ

ିଵΣୀାଵ
 𝑦

ଵ/ఒೖ + 𝑦
ଵ/ఒೖ

ఒೖ
𝑃 =

∑ஷ 𝑒
ೕ
ఒೕ 𝑒

ೕ
ఒೕ + 𝑒


ఒೕ

ఒೕିଵ

Σୀଵ
ିଵΣୀାଵ

 𝑒
ೖ
ఒೖ + 𝑒


ఒೖ

ఒೖ

Generalized 
nested logit

𝐺 = Σୀଵ Σ∈ೖ 𝛼𝑦
ଵ/ఒೖ ఒೖ 𝑃 =

Σ 𝛼𝑒ೕ
ଵ
ఒೖ Σ∈ೖ 𝛼𝑒

ଵ
ఒೖ

ఒೖିଵ

Σୀଵ Σ∈ೖ 𝛼𝑒
ଵ
ఒ

ఒ
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* 𝑦 ≔ exp 𝑉



Strengths and limitations
• Strengths

– A closed-form discrete choice model without 
assuming specific error distributions

– This allow us to derive a number of 
behaviorally understandable models
• Nested logit, Cross-nested logit, Paired combinational 

logit, etc.

• Limitations
– Only for additive utility, i.e., 𝑢 = 𝑉 + 𝜖

• 𝑉 and 𝜖 can be dependent each other
– Only for GEV MEV family

• Some other distributions can be useful in some context
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VARIANCE STABILIZATION &
SOME EXAMPLES
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Variance stabilization
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Two fundamental ideas:
1. A stable class of distributions w.r.t. the minimum operation

2. Variance-stabilizing transformations

Suppose the random disutility 𝑋 from the following 𝐶𝐷𝐹:
𝐹 𝑥 = Pr 𝑋 < 𝑥 = 1 − [1 − 𝐹(𝑥)]ఈೕ

The minimum random disutility 𝑋 under the assumption of 
independence can be written as:

Pr min
∈

𝑋 < 𝑥 = 1 − Π∈ Pr 1 − 𝐹 𝑥 = 1 − [1 − 𝐹(𝑥)]ఈబ

Unspecified base 
distribution function

Consider the transformation of 𝐹 𝑥 to the Gumbel distribution:

𝐹 𝑥 = Pr 𝑋 < 𝑥 = 1 − 1 − 𝐹 𝑥 ఈೕ

A transformation function ℎ 𝑥 which stabilize the variance 
can be defined as:

ℎ 𝑥 = 𝜃ିଵlog{− log 1 − 𝐹 𝑥 }
The transformed random variable 𝑍 = ℎ 𝑋 follows:

𝐺 𝑧; 𝜃, 𝛼 = 1 − exp[−𝛼 exp 𝜃𝑧 ] [Gumbel]

(Li, 2011)

𝛼 = Σ∈𝛼



Derivation of choice probability
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(Li, 2011)

𝑃 = Pr{𝑋 ≤ min
ᇲ ஷ

𝑋ᇲ} = Pr{𝑍 ≤ min
ᇲ ஷ

𝑍ᇲ}

= ∫௭∈ஐ
𝑄ଵ 𝑧 ⋯𝑄ିଵ 𝑧 𝑓 𝑧 𝑄ାଵ 𝑧 ⋯𝑄 𝑧 𝑑𝑧

𝑍 = ℎ 𝑋 where ℎ ȉ is a monotonically 
increasing transformation

where, 
𝑄 𝑧 = 1 − 𝐹 𝑧 = exp −𝛼exp𝜃𝑧 , and
𝑓 𝑧 = 𝜃𝛼 exp −𝛼 exp 𝜃𝑧 exp 𝜃𝑧

𝑃 = 𝜃𝛼 න
௭∈ஐ

exp −𝛼 exp 𝜃𝑧 exp 𝜃𝑧 𝑑𝑧

=
ఈೕ
ఈబ

=
ఈೕ

ஊೕᇲ∈ఈೕᇲ
=

ு ೕ
ஊೕᇲ∈ு ೕᇲ

Since ℎ 𝑋 follows the Gumbel where the CDF is 1 − exp[−𝛼 exp 𝜃𝑥 ], 
𝐸 ℎ 𝑋 = −{log 𝛼 + 𝛾}/𝜃. Thus, 𝛼 = exp{−𝛾 − 𝜃𝐸 ℎ 𝑋 }

How to specify 𝛼?



Some examples
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• The models with the distributions of: Exponential, Parato, 
Type II generalized logistic, Gompertz, Rayleigh, Weibull, and 
Gumbel (some types of distributions need approximations)

(Li, 2011)



Further generalization
“Scale parameter is absorbed into 𝐻 ȉ so it is not identifiable. 
Hence, extending the multinomial logit model by allowing an 
unspecified functional form 𝐻 ȉ can address both the issue of 
non-linearity in the mean function and the issue of variance 
stabilization” (p. 465)
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(Li, 2011)

𝐻 𝑉
Σᇱ∈𝐻 𝑉ᇱ

=
exp 𝑆 𝛃𝐱𝐢𝐣

Σᇱ∈ exp 𝑆 𝛃𝐱𝐢𝐣

where 𝑆 ȉ is a sensitivity function

Since 𝐻 𝑉 [= 𝛼] should be non-negative, it is natural to assume:

Semi-parametric approach (such as P-splines approach) can 
be used as an approximation of any base distribution 𝐹



Distribution/linearity: an example
(1) Differences in distribution assumption
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Gumbel distribution Weibull distribution
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𝑢: Random utility
𝑉: Systematic utility (linear in parameters)
εij:   Error term

Logit model Weibit (or multiplicative) model

𝑒 is 
dependent 
on 𝑉

𝑒 is 
independen
t from 𝑉



Distribution/linearity: an example

17

  ijijij Vfu 

Linear systematic utility Logarithm systematic utility

εij:   Gumbel distribution

vij

-uij

vij

-uij

(2) Difference in systematic utility

Logit model Weibit (or multiplicative) model
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Logit 
model

Distribution/linearity: an example

  ijijij Vfgu ,

Gumbel  Weibull

Linear  Logarithm

Weibit
model

Randam utility distribution:

Systematic utility function:

Castillo et al. (2008)

(See Castillo et al. (2008) for elegant explanations)



Strengths and limitations
• Strengths

– Not limited to the MEV distribution. A larger 
class of distributions can be assumed in the 
development of closed-form choice models

– A semi-parametric discrete choice model can 
approximate any base distribution 𝐹

• Limitations
– Only under the assumption of independence

• Unobserved terms need to be independent across 
alternatives

– Behavioral foundations of some types of 
distributions has not been well established
• Increase the difficulty to use the models in practice
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GENERALIZED G FUNCTION &
SOME EXAMPLES
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Generalized G (A) function
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The properties that the 𝐴 function must exhibit
① 𝐴 𝑦ଵ, 𝑦ଶ, … , 𝑦 ≥ 0

② 𝐴 is homogeneous of degree one: 𝐴 𝛼𝑦ଵ, … , 𝛼𝑦 = 𝛼𝐴 𝑦ଵ, … , 𝑦

③ lim
௬ೕ→ିஶ

𝐴 𝑦ଵ, 𝑦ଶ, … , 𝑦 = ∞

④The cross partial derivatives of 𝐴 satisfy:

−1  ȉ
డೖ ௬భ,௬మ,…,௬
డ௬భడ௬మ⋯డ௬ೖ

≥ 0

𝑃 =
𝑤 ȉ 𝐴 𝑤ଵ, 𝑤ଶ, … , 𝑤

𝐴 𝑤ଵ, 𝑤ଶ, … , 𝑤

𝐹(𝑥ଵ, … , 𝑥) = exp{−𝐴(−𝑤ଵln[𝛹 𝑥ଵ ], … , −𝑤ln[𝛹 𝑥 ])}Assumption:

When 𝑤 = 𝑒ೕ and 𝛹 𝑥 ~𝑖. 𝑖. 𝑑. 𝐺𝑢𝑚𝑏𝑒𝑙, 𝐴 function  becomes  McFaddenʼ’s  𝐺 function

(Mattsson et al., 2014)

When all conditions are satisfied, the choice probability can be defined as:

(where, 𝐴 = 𝜕𝐴/𝜕𝑤)



Derivation of A function
Suppose 𝑢 = 𝑓 𝑤, 𝑥 , where (𝑥ଵ, … , 𝑥) is distributed 𝐹 defined as:

𝐹(𝑥ଵ, … , 𝑥) = exp{−𝐴 −𝑤ଵ ln 𝛹 𝑥ଵ , … , −𝑤 ln 𝛹 𝑥 }

Then, the probability of the first alternative 𝑃ଵ satisfies:

𝑃ଵ = න
௫∈ஐ

𝐹ଵ 𝑥, 𝑥, … , 𝑥 𝑑𝑥

= න
௫∈ஐ

𝑒ି ି௪భ ୪୬ అ ௫భ ,…,ି௪ ୪୬ అ ௫ ×

𝐴ଵ −𝑤ଵ ln 𝛹 𝑥ଵ , … , −𝑤 ln 𝛹 𝑥 ȉ 𝑤ଵ ȉ
𝜓 𝑥
𝛹 𝑥

𝑑𝑥

= 𝑤ଵ ȉ
𝐴ଵ 𝑤
𝐴 𝑤 න

௫∈ஐ

𝐴 𝑤 𝛹 𝑥  ௪ ିଵ𝜓 𝑥 𝑑𝑥

= 𝑤ଵ ȉ
𝐴ଵ 𝑤
𝐴 𝑤
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Uses the linear homogeneity
=density function of 𝐹

(Mattsson et al., 2014)

Assuming the statistical independence, 
𝑃ଵ =

௪భ
ஊೕ∈௪ೕ

which  is  equivalent  to  Liʼ’s  (2011)  model



Some examples [1/2]
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(Mattsson et al., 2014)

G function Choice probability
Under the assumption of independence
Logit
(Gumbel)

𝐴: summation, 𝑤 = 𝑒ఉೕ,
𝛹 𝑥 ~𝐺𝑢𝑚𝑏𝑒𝑙(𝛽, 0)

𝑃 =
exp 𝑉

Σᇱୀଵ
 exp 𝑉ᇱ

Weibit-type
(Frechet) 𝐴: summation, 𝑤 = 𝑉ఉ,

𝛹 𝑥 ~𝐹𝑟𝑒𝑐ℎ𝑒𝑡(𝛽, 1)
𝑃 =

𝑉
ఉ

Σᇱୀଵ
 𝑉ᇱ

ఉ

Weibit
(Weibull) 𝐴: summation, 𝑤 = 𝑉ିఉ,

𝛹 𝑥 ~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛽, 1)
𝑃 =

𝑉
ିఉ

Σᇱୀଵ
 𝑉ᇱ

ିఉ

Under the statistical dependence

Nested logit, Paired combinational logit, Cross-nested logit, etc. (Same as the models 
derived from G function), AND some other models (see the next page)



Some examples [2/2]
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(Mattsson et al., 2014)

An example of A function under the statistical dependence

At this moment, the behavioral foundations 
have not been well established



Strengths and limitations
• Strengths

– Extend  McFaddenʼ’s  G  function
• From MEV to GEV (but not fully GEV)

– The model can deal with the statistical 
dependence among alternatives
• G-function-based GEV models are the special cases

• Limitations
– Behavioral foundations of some types of 

distributions has not been well established
• Increase the difficulty to use the models in practice
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Summary of closed-form models
• The new types of closed-form models can 

still be developed
• The biggest remaining problem may be the 

lack of behavioral foundation
– The task of behavioral modelers
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