Variation of mode choice based on time of the day

Group B HE Jiahang (Nagoya University)

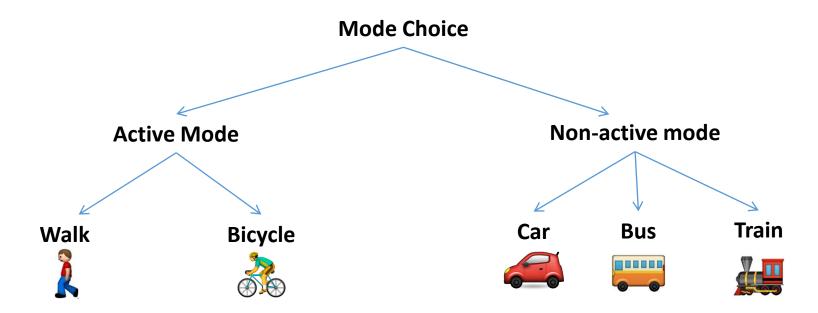
Su Mon Nwe (Nagoya University)

Aupal Mondal (IIT Bombay)

Karan Barpete (IIT Bombay)

Varun Varghese (IIT Bombay)

Primary structure of the Mode choice model



Why a Nested Logit Model based on Active and Non-active modes?

- Travellers in general have a differentiated perception about modes that require physical activity (active modes) from the non-active modes.
- Characteristics of traveller may influence active and non-active mode choice .
- Time of the day (peak/off-peak) and the purpose of the trip may affect the choice of active or non-active model of an individual.

25 26 27 28 29 30 31 32 33 34 35 26	<pre>pa <- x[6] a1 <- x[7] a2 <- x[8] p1<-x[9] p2<-x[10] p3<-x[11] p4<-x[12] #a3 <- x[13] #a4 <- x[10] ## declare the log-likelihood variable, set value to 0 LL = 0</pre> Our original utility function of nested logit model.						
36 37 38 39 40 41 42 43 44 45 46	<pre>## calculate the utility function: :introduce the desired explanatory variables in the function train <- Data\$ModeAvailableTrain*exp(d1*Data\$TotalTimeTrain/100+p1*Data\$Peak +b1*matrix(1,nrow =hh,ncol=1)) bus <- Data\$ModeAvailableBus *exp(d1*Data\$TotalTimeBus/100 +b2*matrix(1,nrow =hh,ncol=1)) car <- Data\$ModeAvailableCar *exp(d1*Data\$TimeCar/100+p2*Data\$Peak +b3*matrix(1,nrow =hh,ncol=1)) bike <- Data\$ModeAvailableBike *exp(d1*Data\$TimeBike/100+p3*Data\$Peak +b4*matrix(1,nrow =hh,ncol=1)) walk <- Data\$ModeAvailableWalk *exp(d1*Data\$TimeBike/100+p4*Data\$Peak +b4*matrix(1,nrow =hh,ncol=1)) walk <- Data\$ModeAvailableWalk *exp(d1*Data\$TimeWalk/100+p4*Data\$Peak) ### Construct nests.First, calculate active or non-active choice probabilityP(LVI) ## setting of log-sum variables logsum.act <- log(((bike +walk)!=0) * (bike + walk) + ((bike+walk)==0)) logsum.nonact <- log(((car + bus+ train)!=0) * (car + bus+ train) + ((car + bus+ train)==0)) </pre>						
47 48 49 50 51 52 53 54	<pre>##Calculate active or non-active choice probability with these log-sum variables nume.act <- (logsum.act != 0)*exp(pa*logsum.act+a2*Data\$Leisure) + (logsum.act == 0) nume.nonact <- (logsum.nonact != 0)*exp(pa*logsum.nonact + a1*Data\$AgeFemale45) + (logsum.nonact == 0) deno <- nume.act + nume.nonact P.act <- nume.act / deno P.nonact <- nume.nonact / deno Nested function</pre>						

```
56
      ### Next, calculate conditional probability.P(LV2|LV1)
57
      ## conditional probability under active choice
58
     deno.act <- bike + walk</pre>
59
     P.bike.act <- bike / ((deno.act!=0)*deno.act + (deno.act==0))
60
     P.walk.act <- walk / ((deno.act!=0)*deno.act+ (deno.act==0))
61
62
    ## conditional probability non-active choice
63
     deno.nonact <- car + bus + train
64
     P.car.nonact <- car / ((deno.nonact!=0)*deno.nonact + (deno.nonact==0))
65
     P.bus.nonact <- bus / ((deno.nonact!=0)*deno.nonact + (deno.nonact==0))
66
     P.train.nonact <- train / ((deno.nonact!=0)*deno.nonact + (deno.nonact==0))
67
     ### Finally, calculate joint probability. P(LV1, LV2) = P(LV2|LV1)*P(LV1)
68
69
       P.bike <- P.bike.act * P.act
70
       P.walk <- P.walk.act * P.act
71
       P.car <- P.car.nonact * P.nonact
72
       P.bus <- P.bus.nonact * P.nonact
73
       P.train <- P.train.nonact * P.nonact
       ## Avoid problems stemming from choice probabilities becoming zero.
74
75
       P.train \langle P.train | = 0 \rangle*P.train + (P.train==0)
76
       P.bus <- (P.bus!=0) *P.bus + (P.bus==0)
77
       P.car <- (P.car!=0) *P.car + (P.car=0)
78
       P.bike \langle -(P.bike|=0) \rangle P.bike + (P.bike==0)
      P.walk \langle P.walk | = 0 \rangle * P.walk + (P.walk = = 0)
79
```

```
## Choice results
80
      Ctrain
                <- Data$MainModeENG =="Rail"</pre>
81
              <- Data$MainModeENG =="Bus"
      Cbus
82
            <- Data$MainModeENG =="Car"
83
     Ccar
            <- Data$MainModeENG =="Bicycle"</pre>
     Cbike
84
     Cwalk
              <- Data$MainModeENG =="Walk"
85
86
      ## Calculate the Log-likelihood function
     LL <- colSums(Ctrain*log(P.train) + Cbus*log(P.bus) + Ccar *log(P.car) + Cbike *log(P.bike) + Cwalk *log(P.walk))
87
88
89
     }
90 -
          ##### Maximize the Log-likelihood function#####
91
              ##Parameter optimization
92
              res <- optim(b0,fr, upper=c(Inf, Inf, Inf, Inf, Inf</pre>
                                                                         Inf), method = "L-BFGS-B", hessian = TRUE, control=
93
94
                                                                           We calculate the
95
               ## Parmeter estimation?Hessian matrix calculation
96
                     <- res$par
                 b
                                                                          scale parameter at
                hhh <- res$hessian
97
98
                                                                                   first
99
                   ## Calculate the t-statistic
100
                    tval <- b/sqrt(-diag(solve(hhh)))</pre>
101
                      ## L(0), Log-Likelihood when all parameters are 0
102
103
                    L0 <- fr(b0)
                   ## LL, maximium likelihood
104
105
                     LL <- res$value
```

> ##### Output #####

print(res)

\$par

>

[1] 0.37973780 -1.94622631 -1.31251851 -1.08916068 -11.12017329

[10] -0.84076453 -0.91399755 -0.38458997

\$value

[1] -1260.269

\$counts

function gradient 66 66

00 00

\$convergence
[1] 0

\$message

[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

1.01370529 0.67255019

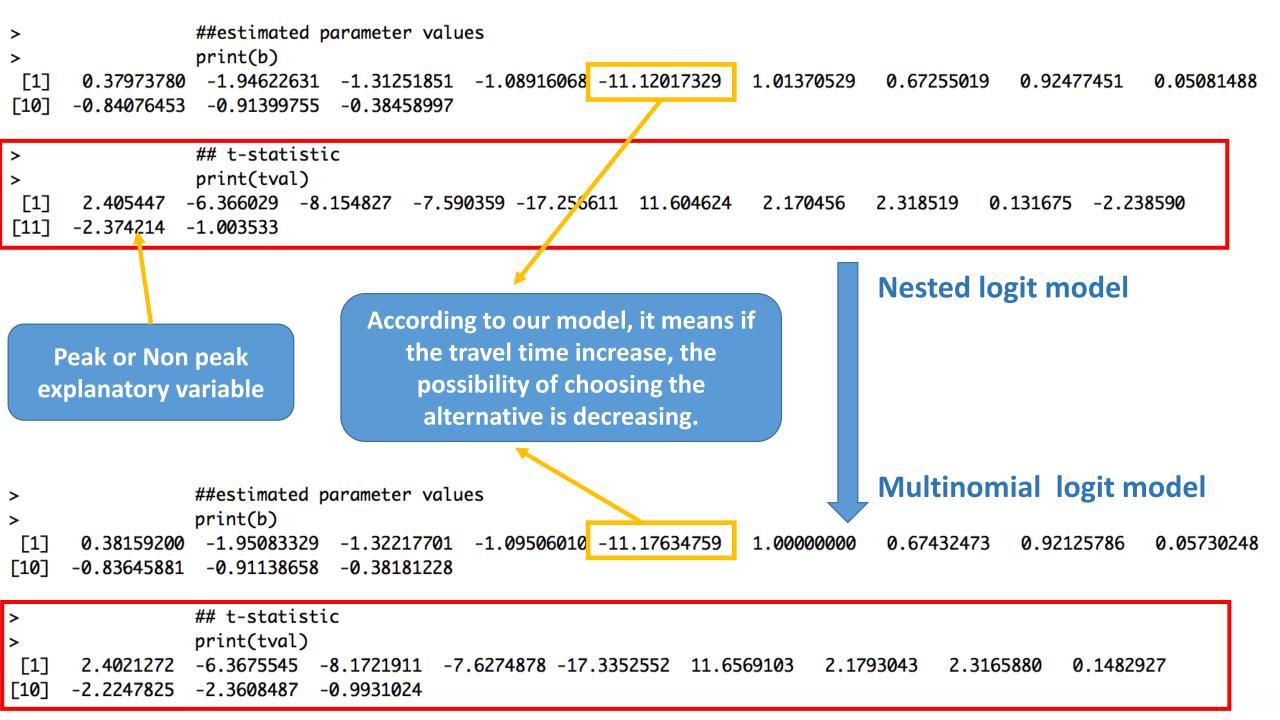
0.92477451 0.05081488

And we got the answer of scale parameter as 1.01, which is very close to 1.

```
## Choice results
80
81
      Ctrain <- Data$MainModeENG == "Rail"
     Cbus <- Data$MainModeENG == "Bus"
82
     Ccar <- Data$MainModeENG =="Car"
83
     Cbike <- Data$MainModeENG == "Bicycle"
84
             <- Data$MainModeENG =="Walk"
85
    Cwalk
      ## Calculate the Log-likelihood function
86
    LL <- colSums(Ctrain*log(P.train) + Cbus*log(P.bus) + Ccar *log(P.car) + Cbike *log(P.bike) + Cwalk *log(P.walk))
87
88
89
     }
         ##### Maximize the Log-likelihood function#####
90 -
91
92
             ##Parameter optimization
             res <- optim(b0,fr, upper=c(Inf, Inf, Inf, Inf, Inf, Inf, 1, Inf), method = "L-BFGS-B", hessian = TRUE, control=list(fr
93
94
              ## Parmeter estimation?Hessian matrix calculation
95
                                                                             So we set the scale
96
                b <- res$par
                                                                          parameter as 1, then the
               hhh <- res$hessian
97
98
                                                                               model became a
                  ## Calculate the t-statistic
99
                   tval <- b/sqrt(-diag(solve(hhh)))</pre>
100
                                                                          multinomial logit model.
101
                     ## L(0), Log-Likelihood when all parameters are 0
102
                   L0 <- fr(b0)
103
104
                  ## LL, maximium likelihood
105
                    LL <- res$value
```

> >		##### Output print(res)	#####						
\$par [1]	0.37973780	-1.94622631	-1.31251851	-1.08916068	-11.12017329	1.01370529	0.67255019	0.92477451	0.05081488
[10] \$value	-0.84076453 e	-0.91399755	-0.38458997				sted logit m		
\$coun	1260.269 ts ion gradient 66 66								
> > \$par		##### Output print(res)	#####			Mu	Iltinomial lo	ogit model	
[1]	0.38159200	-1.95083329	-1.32217701	-1.09506010	-11.17634759	1.00000000	0.67432473	0.92125786	0.05730248
[10] \$valu [1] -:	-0.83645881 e 1260.282	-0.91138658	-0.38181228						
\$coun funct	ts ion gradient 48 48								
\$conv [1] 0	ergence								
<pre>\$message [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"</pre>									

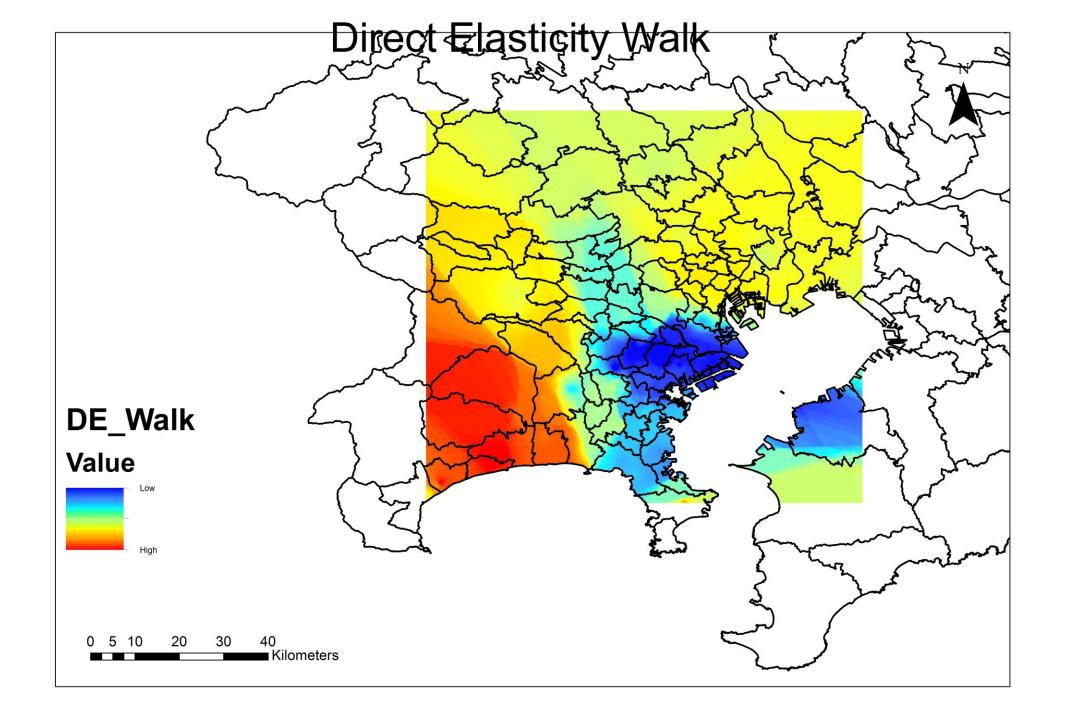
>	## L(0) print(L0)		
[1] -2158.061			
>	## LL print(LL)		
[1] -1260.282	princ(LL)		
> > [1] 0.4160121	##rho-square print((L0-LL)/L0)		
> > [1] 0.4104516	## adjusted rho-square print((L0-(LL-length(b)))/L0)		
Multinomial logit model			
	> [1] -1260.282 > [1] 0.4160121 > > [1] 0.4104516 I] 0.4104516		

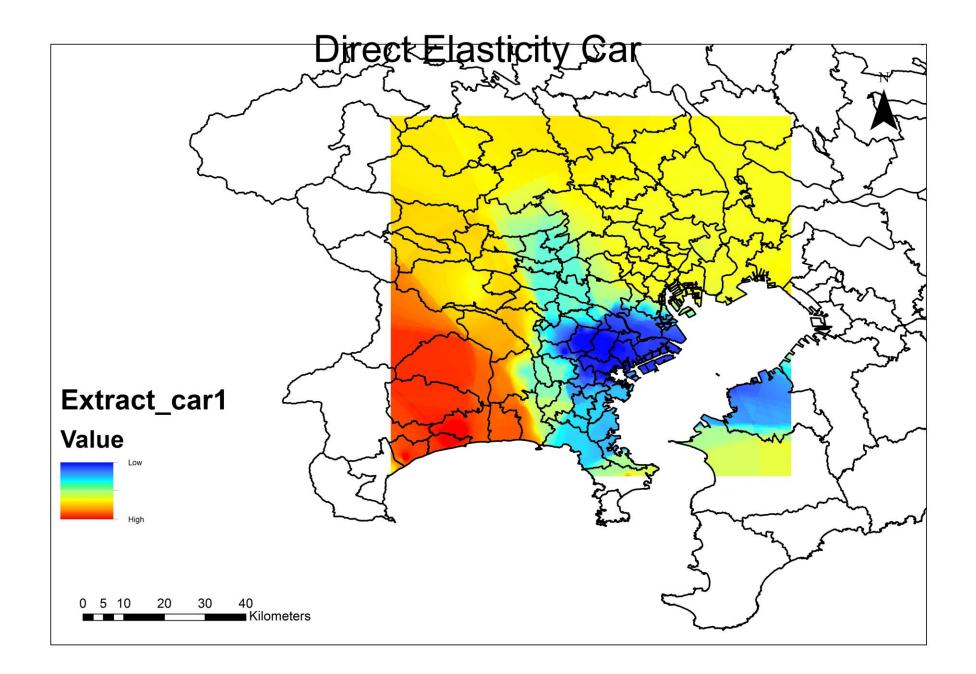


Elasticity based on distance

Distance		DE_bike_time	DE_walk_time	DE_car_time	DE_bus_time	DE_train_time
Less than	Mean	42	63	56	12	74
1km	N	334.00	334.00	334.00	334.00	334.00
	Std. Deviation	.17	.28	.30	.16	1.06
1km-3km	Mean	-1.18	-1.97	-1.13	41	-1.87
	N	342.00	342.00	342.00	342.00	342.00
	Std. Deviation	.36	.66	.35	.56	1.07
3km-5km	Mean	-2.63	-4.22	-1.87	41	-2.61
	N	115.00	115.00	115.00	115.00	115.00
	Std. Deviation	.48	.89	.47	.90	1.20
5km-10km	Mean	-5.07	-7.03	-2.73	07	-2.41
	N	120.00	120.00	120.00	120.00	120.00
	Std. Deviation	1.02	1.31	.56	.48	1.04
Gretear	Mean	-14.62	-12.41	-6.41	08	-6.09
han 10km	N	611.00	611.00	611.00	611.00	611.00
	Std. Deviation	6.29	2.63	2.43	.46	3.00
Total	Mean	-6.83	-6.44	-3.31	19	-3.42
	N	1522.00	1522.00	1522.00	1522.00	1522.00
	Std. Deviation	7.63	5.45	3.04	.51	3.07

Cross Elasticity							
Wavg_bike	Wavg_walk	Wavg_car	Wavg_bus	Wavg_train	Distance		
0.06	0.71	0.21	0.17	1.95	a) less than 1 km		
0.00	0.71	0.21	0.17	1.75	KIII		
0.11	1 10	0.15	0.17				
0.11	1.19	0.15	0.17	2.2	b) 1km-3km		
0.22	2.85	0.19	0.12	2.88	c) 3km-5km		
0.33	6.42	0.14	0.15	1.9	d) 5km-10km		
					e) Greater than		
0.35	26.95	0.21	0.08	2.82	10km		





Conclusion

- MNL structure most appropriate for the model
- Variation in elasticities plotted based on distance and spatially
- Elasticities increase with increasing distance for all modes.
- Spatial variation in elasticity for modes can be used for targeted policies in designated areas.

Thank You