帰宅時におけるグルメ情報が行動選択に与える影響

グループG

東京理科大学

久米 大河 北村 卓也

中野 総士 藤井 大喜

帰宅時におけるグルメ情報 が行動選択に与える影響

グループG

東京理科大学

久米 大河 北村 卓也

中野 総士 藤井 大喜

就業後の行動目的に関する 分析

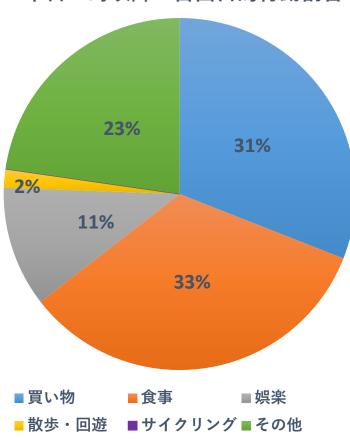
グループG

東京理科大学

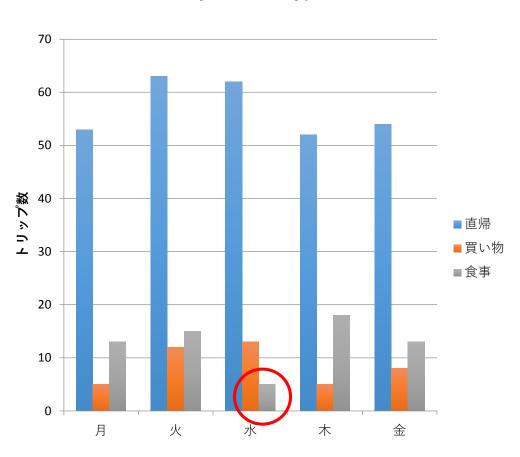
久米 大河 北村 卓也

中野 総士 藤井 大喜

背景


・最初は、グルメについて考えていたけれども、 とても厳しいので、アフター5の行動について 目的選択のモデル化をしてみることにした。

基礎分析(1)



- ・業務関係を除くアフター 5の行動目的は食事・買 い物の割合が高い
- ▶今回は勤務終了後の活 動目的を考える.
- ▶食事・買い物・直帰の3 パターンの目的を考えれ ばよい

基礎分析(2)

曜日別の活動

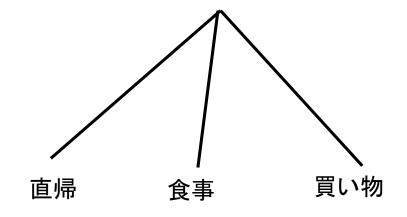
- グラフより水曜 日は食事トリッ プが少ない
- ・食事の効用関数 に曜日ダミーを 入れる

どのような条件で外食をとるのか?

- ・前日に外食したら翌 日は外食しにくくな るのでは
- →食事ダミーを入れた
- ・ショッピング時間と 関係性?
- →買い物項のトリップ 間の時刻の差を所要時 間として考慮

退社時間が遅くなるほど直帰しやすくなるのでは

→時間項を用意


モデル

• 効用関数

$$U_{home} = V_1 + \varepsilon_1 = \beta_1$$
 (出発時刻)
$$+ b_1 + \varepsilon_1$$

$$U_{shop} = V_2 + \varepsilon_2 = \beta_2$$
 (活動時間)
$$+ b_6 + \varepsilon_6$$

$$U_{din} = V_3 + \varepsilon_3 = \beta_3$$
 (金曜ダミー)
$$+ \beta_4$$
 (食事ダミー)
$$+ \varepsilon_7$$

□選択確率

$$P_{n}(i) = \frac{\exp(\mu V_{ni})}{\sum_{j=1}^{3} \exp(\mu V_{nj})}$$
$$i \in j = \{1, 2, 3, \}$$

分析結果

	パラメータ	t値	
定数項(買い物)	-4.134	-4.396**	
定数項(食事)	-4.022	-4.338**	
活動時間 <i>β</i> 1	6.395	5.885**	
活動時間β2	-0.125	-2.471*	
水曜ダミー	-0.687	-1.074	
食事ダミー	0.695	1.223	
サンプル数		244	
初期尤度		-268.06	
最終尤度		-159.71	
決定係数		0.4	
修正済み決定係数		0.38	