自動運転の時間と料金に着目した 交通手段選択モデル

The mode choice model focusing on the time and the price for Autonomous Car

Team K 2016

- Shiga&Hayakawa
- KatoUNIVERSITY OF TOKYO
- NakaoUNIVERSITY OF LEEDS
- KusudaMobility Journalist

- ●志賀孝広、早川敬一郎
- ●東京大学 加藤真大
- ●リース大学 中尾晴子
- ●モビリティジャーナリスト 楠田悦子

0. 背景

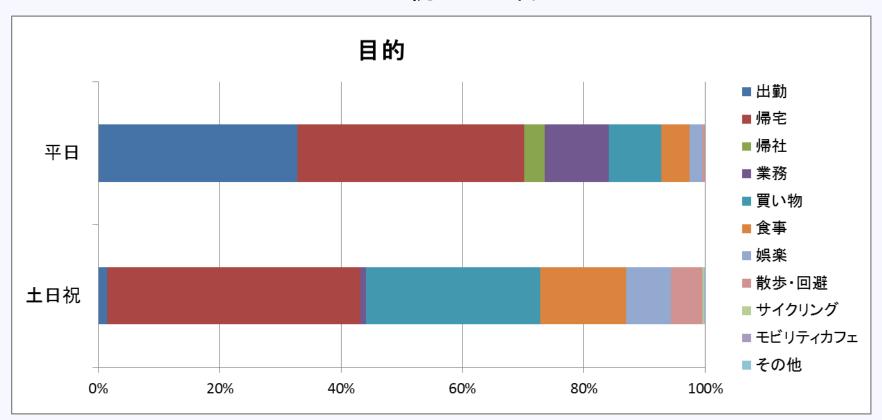
The background and purpose

背景:2020年をマイルストーンとして自動運転の 技術開発、法整備、販売が進む

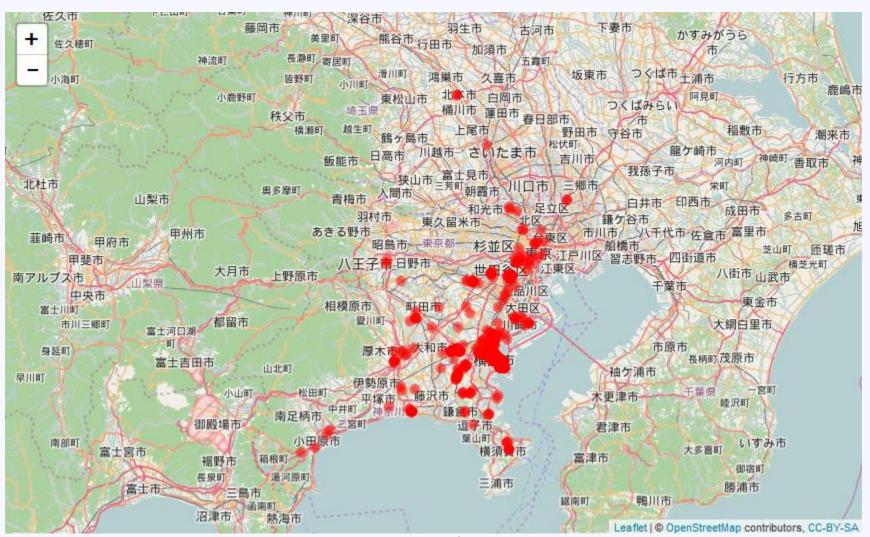
Background; The 2020 is a milestone to develop the technology, legislation and sales of the autonomous car.

目的: 自動車が完全自動運転(レベル4)タクシー に100%置き換わった場合による交通選択への影響を考える

Purpose; Targeting all trip(520trip) on Saturday, Sunday and public holidays. analying the influence for the mode choice by the autonomous car taxi(level 4)


1. 基礎分析

The basic analysis


平日の移動目的:出勤が多い (帰宅を除く)

土日祝: 出勤はわずか

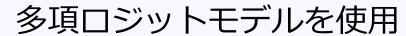
→土日祝日に注目

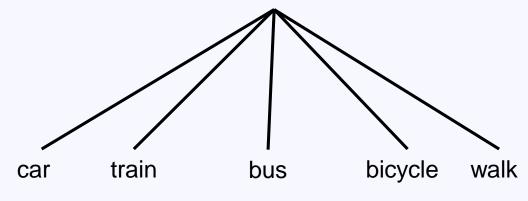
解析対象: 土日祝の全トリップ(520trip)

2. モデル構造

The estimation of the model

効用関数


$$U_{car} = \beta_1(\text{time}_{car}) + \beta_2(\text{cost}_{car}) + b_{car}$$


$$U_{train} = \beta_1(\text{time}_{train}) + \beta_2(\text{cost}_{train}) + b_{train}$$

$$U_{bus} = \beta_1(\text{time}_{bus} + \beta_2(\text{cost}_{bus}) + b_{bus}$$

$$U_{bicycle} = \beta_1(\text{time}_{bicycle}) + b_{bicycle}$$

$$U_{walk} = \beta_1(\text{time}_{walk})$$

- ・バス・電車のコストは運 賃を使用
- 車のコスト走行距離×燃費(8円/km)

2. モデル推定結果

The result of the estimation

	パラメータ	t値	
定数項(電車)	-0.321	-1.26	
定数項(バス)	-2.35	- 5.76 :	**
定数項(車)	-1.11	-6.81	**
定数項(自転車)	-1.31	-8.12	**
所要時間[100分]	-8.88	-10.27 ·	**
費用[10円]	0.00962	1.29	\longrightarrow
サンプル数		520	
初期尤度		-713.14	
最終尤度		-527.46	
決定係数		0.260	
修正済み決定係数		0.252	
	(′* 5%右音 *	* 1%有音)

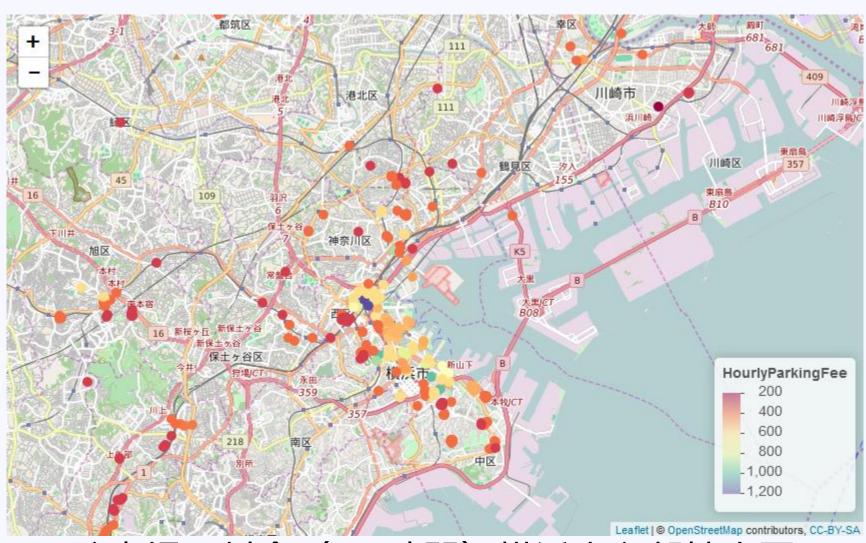
費用の係数が負。 有意性が無い。

(* 3% **有 息**) ** 1% **有 息**)

免許保有ダミー・駐車場代を説明変数に追加

2. モデル構造

The estimation of the model


効用関数

$$\begin{split} &U_{car} = \beta_1 (\mathsf{time}_{car}) + \beta_2 (\mathsf{cost}_{car}) + \beta_3 \cdot \mathfrak{A} 許 \mathcal{F} \stackrel{>}{>} - + b_{car} \\ &U_{train} = \beta_1 \mathsf{t} (\mathsf{ime}_{train}) + \beta_2 (\mathsf{cost}_{train}) + b_{train} \\ &U_{bus} = \beta_1 (\mathsf{time}_{bus}) + \beta_2 (\mathsf{cost}_{bus}) + b_{bus} \\ &U_{bicycle} = \beta_1 (\mathsf{time}_{bicycle}) + b_{bicycle} \\ &U_{walk} = \beta_1 (\mathsf{time}_{walk}) \end{split}$$

・車のコスト

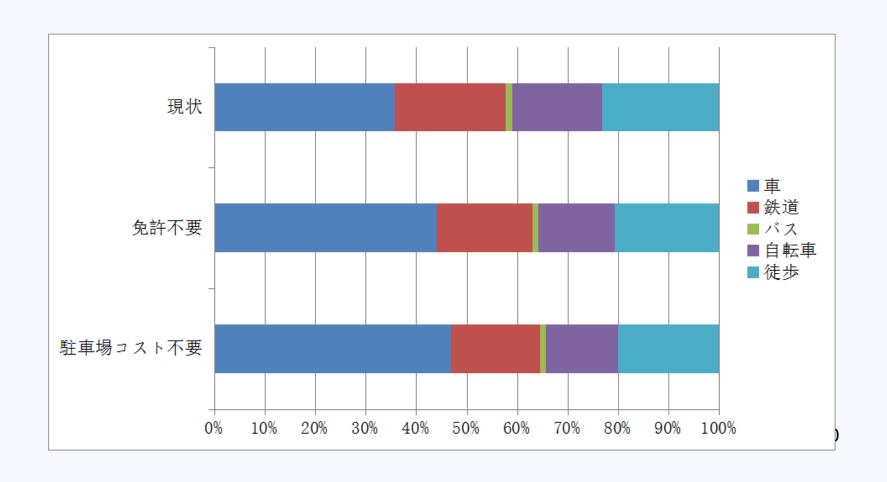
(滞在時間×一時間あたりの駐車料金)

解析対象: 土日祝の全トリップ(520trip)

駐車場の料金(円/時間)横浜中心部拡大図

2. モデル構造

The estimation of the model


	パラメータ	t値
定数項(電車)	-0.00604	-0.03
定数項(バス)	-2.39	-5.70 **
定数項(車)	-8.05	-5.27 **
定数項(自転車)	-1.38	-8.26 * *
所要時間[100分]	-10.0	-10.24 **
費用[10円]	-0.00272	-2.01 *
免許保有ダミー	7.34	4.94 **
サンプル数		520
初期尤度		-713.14
最終尤度		-465.82
決定係数		0.347
修正済み決定係数		0.337
	1.	

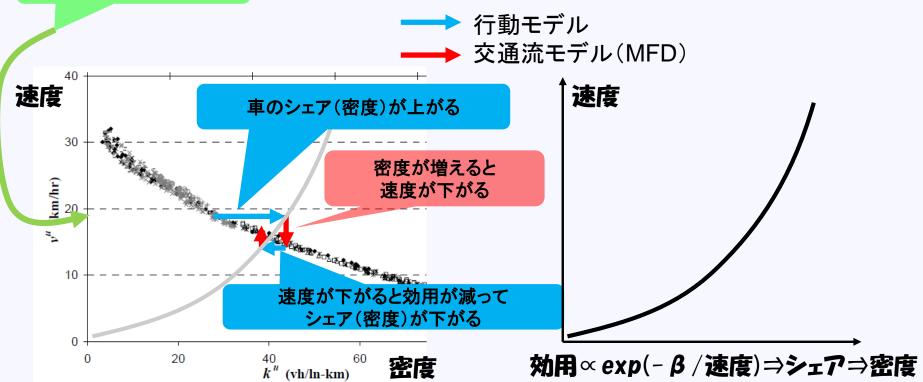
(* 5%有意, ** 1%有意)

3. 政策シミュレーション

The policy simulation


自動運転で、免許不要、駐車場コストもかからなくなると、自動車の選択が増える

3.政策シミュレーション


The policy simulation

完全自動運転タクシーになると自動車の所要時間(& 時間価値)も変わる

行動モデルと交通流モデルで 均衡計算が必要

520サンプルの平均速度 19.7±8.5km/h

交通流モデル(MFD)

行動モデル

横浜のMFD (Macroscopic Fundamental Diagram) 出典: Geroliminis and Daganzo (2007)

自動運転で時間価値が減る? (時間がかかっても気にならなくなる)

図の出典:http://monostudio.jp/

課題2-1:経年変化の実証研究

- 欧州では、ある程度の期間、交通の時間価値研究が蓄積
- オランダの調査(1988-1997年)によれば、時間 価値は経年で低下傾向 が報告されている(Gunn et al., 1996)
 - ・原因の1つは、携帯電話 の普及による移動中の活 動増加とされる

経年変化の要因(MVA et al, 1997)

在午麦化の安囚(MVA et al, 1997)		
増加要因	減少要因	
• 失業減少	• 労働時間減少	
・ 余暇時間の魅力 向上	・ 退職者比率の 増加	
・ 仕事の魅力向上	・ 移動の質の改 善	
・ 女性の社会参画	移動中の活動 バリエーション	

車内スマホ利用等が時間価値にもたらす影響の実証研究が必要

出典:東大 加藤浩徳

http://www.nikkoken.or.jp/pdf/symposium/150626b.pdf