Behavior Models and Optimization

Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

October 14, 2017

Outline

[Demand and supply](#page-1-0)

[Disaggregate demand models](#page-8-0)

- [Literature](#page-14-0)
	- 4 [A generic framework](#page-21-0)

- **•** [Example: one theater](#page-32-0)
- **•** [Example: two theaters](#page-40-0)
- [Case study](#page-45-0)
- **[Conclusion](#page-56-0)**

Demand models

- \bullet Supply = infrastructure
- \bullet Demand $=$ behavior, choices
- \bullet Congestion = mismatch

Demand models

- Usually in OR:
- o optimization of the supply
- for a given (fixed) demand

Aggregate demand

- **Homogeneous population**
- Identical behavior
- Price (P) and quantity (Q)
- Demand functions: $P = f(Q)$
- Inverse demand: $Q = f^{-1}(P)$

Disaggregate demand

- Heterogeneous population
- **•** Different behaviors
- Many variables:
	- Attributes: price, travel time, reliability, frequency, etc.
	- Characteristics: age, income, education, etc.
- \bullet Complex demand/inverse demand functions.

 \rightarrow \rightarrow \equiv \rightarrow

EDENIE DE LAISANNI

 Ω

Demand-supply interactions

Operations Research

- Given the demand...
- configure the system

Behavioral models

- Given the configuration of the system...
- o predict the demand

 \leftarrow

Michel Bierlaire (EPFL) [Behavior Models and Optimization](#page-0-0) 0. October 14, 2017 7 / 66

 Ω

 \sim \rightarrow \equiv

Demand-supply interactions

Multi-objective optimization

4 日下

 QQ

ヨメ イヨメ

Outline

[Demand and supply](#page-1-0)

[Disaggregate demand models](#page-8-0)

[Literature](#page-14-0)

4 [A generic framework](#page-21-0)

4 0 8

 QQ

 \mathbb{B} is a \mathbb{B} is

Choice models

Behavioral models

- \bullet Demand $=$ sequence of choices
- Choosing means trade-offs
- In practice: derive trade-offs from choice models

Choice models

Theoretical foundations

- Random utility theory
- \bullet Choice set: C_n
- $y_{in} = 1$ if $i \in \mathcal{C}_n$, 0 if not

 $P(i|\mathcal{C}_n) = \frac{y_{in}e^{V_{in}}}{\sum_{n=1}^{n}y_{in}e^{V_{in}}}$

 $\sum_{j\in\mathcal{C}}y_{jn}\mathsf{e}^{V_{jn}}$

• Logit model:

4 D F

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

ÉCOLE POLYTECHNIQUE Ω

Logit model

Utility

$$
U_{in}=V_{in}+\varepsilon_{in}
$$

Choice probability
\n
$$
P_n(i|\mathcal{C}_n) = \frac{y_{in}e^{V_{in}}}{\sum_{j \in \mathcal{C}} y_{jn}e^{V_{jn}}}.
$$

- \bullet Decision-maker n
- Alternative $i \in \mathcal{C}_n$

Variables: $x_{in} = (p_{in}, z_{in}, s_n)$

Attributes of alternative $i: z_{in}$

- \bullet Cost / price (p_{in})
- **o** Travel time
- Waiting time
- **a** Level of comfort
- Number of transfers

 s P-OR

- Late/early arrival
- etc.

Characteristics of decision-maker n: sn

- o Income
- Age
- Sex
- Trip purpose
- **•** Car ownership
- **•** Education
- **•** Profession
- etc.

 \rightarrow \rightarrow \equiv \rightarrow

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

 Ω

Demand curve

Price

Outline

 QQ

경제 지경에

同 → →

4.0.3

Stochastic traffic assignment

Features

- Nash equilibrium
- Flow problem
- Demand: path choice

 \leftarrow

• Supply: capacity

 QQ

Selected literature

- [\[Dial, 1971\]](#page-62-0): logit
- [\[Daganzo and Sheffi, 1977\]](#page-61-0): probit
- [\[Fisk, 1980\]](#page-62-1): logit
- [\[Bekhor and Prashker, 2001\]](#page-60-0): cross-nested logit
- and many others...

Revenue management

Features

- **•** Stackelberg game
- Bi-level optimization
- Demand: purchase
- Supply: price and capacity

 Ω

Selected literature

- [Labbé et al., 1998]: bi-level programming
- [\[Andersson, 1998\]](#page-60-1): choice-based RM
- [\[Talluri and Van Ryzin, 2004\]](#page-65-1): choice-based RM
- [\[Gilbert et al., 2014a\]](#page-62-2): logit
- [\[Gilbert et al., 2014b\]](#page-62-3): mixed logit
- [\[Azadeh et al., 2015\]](#page-60-2): global optimization
- and many others...

Facility location problem

Features

- **Competitive market**
- Opening a facility impact the costs
- Opening a facility impact the demand
- **•** Decision variables: availability of the alternatives

$$
P_n(i|\mathcal{C}_n) = \frac{y_{in}e^{V_{in}}}{\sum_{j\in\mathcal{C}}y_{jn}e^{V_{jn}}}.
$$

 Ω

Selected literature

- [\[Hakimi, 1990\]](#page-63-0): competitive location (heuristics)
- [\[Benati, 1999\]](#page-61-1): competitive location (B & B, Lagrangian relaxation, submodularity)
- [Serra and Colomé, 2001]: competitive location (heuristics)
- [\[Marianov et al., 2008\]](#page-64-1): competitive location (heuristic)
- [Haase and Müller, 2013]: school location (simulation-based)

Outline

[Demand and supply](#page-1-0)

[Disaggregate demand models](#page-8-0)

- [Literature](#page-14-0)
	- 4 [A generic framework](#page-21-0)

5 [A simple example](#page-30-0)

- **•** [Example: one theater](#page-32-0)
- **•** [Example: two theaters](#page-40-0)
- [Case study](#page-45-0)
- **[Conclusion](#page-56-0)**

A linear formulation

Utility function

$$
U_{in}=V_{in}+\varepsilon_{in}=\sum_{k}\beta_{k}x_{ink}+f(z_{in})+\varepsilon_{in}.
$$

Simulation

- Assume a distribution for ε_{in}
- E.g. logit: i.i.d. extreme value
- \bullet Draw R realizations ξ_{inv} , $r=1,\ldots,R$
- The choice problem becomes deterministic

 \leftarrow

FEDERALE DE LAUSANNE

 200

 \sim \rightarrow \equiv \rightarrow

÷

Scenarios

Draws

- Draw R realizations ξ_{intr} , $r = 1, \ldots, R$
- We obtain R scenarios

$$
U_{inr} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \xi_{inr}.
$$

- \bullet For each scenario r, we can identify the largest utility.
- It corresponds to the chosen alternative.

Capacities

- Demand may exceed supply
- **Each alternative** *i* can be chosen by maximum c_i individuals.
- An exogenous priority list is available.
- The numbering of individuals is consistent with their priority.

 \sim **A** To **EDENIE DE LAISANNI**

 Ω

Priority list

Application dependent

- **•** First in, first out
- **•** Frequent travelers
- **Subscribers**
- \bullet ...

In this framework

The list of customers must be sorted

References

- **•** Technical report: [\[Bierlaire and Azadeh, 2016\]](#page-61-2)
- **TRISTAN presentation: [\[Pacheco et al., 2016\]](#page-65-3)**
- STRC proceeeding: [\[Pacheco et al., 2017\]](#page-64-2)

Demand model

- Population of N customers (n)
- Choice set $C(i)$
- $\bullet \, \mathcal{C}_n \subset \mathcal{C}$: alternatives considered by customer *n*

Behavioral assumption

$$
\bullet\ \ U_{in}=V_{in}+\varepsilon_{in}
$$

\n- $$
V_{in} = \sum_{k} \beta_{ink} x_{ink}^{e} + q^{d}(x^{d})
$$
\n- $P_n(i|\mathcal{C}_n) = \Pr(U_{in} \geq U_{jn}, \forall j \in \mathcal{C}_n)$
\n

Simulation

- Distribution ε_{in}
- R draws $\xi_{in1}, \ldots, \xi_{inR}$

$$
\bullet \ \ U_{\text{inr}} = V_{\text{in}} + \xi_{\text{inr}}
$$

4 日下

 QQ

÷

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

Supply model

- Operator selling services to a market
	- Price p_{in} (to be decided)
	- \bullet Capacity c_i
- Benefit (revenue cost) to be maximized
- Opt-out option $(i = 0)$

Price characterization

- **Continuous:** lower and upper bound
- Discrete: price levels

Capacity allocation

- Exogenous priority list of customers
- Assumed given
- Capacity as decision variable

4 D F

 Ω

÷

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

MILP (in words)

MILP

max benefit subject to utility definition availability discounted utility choice capacity allocation price selection

 299

э

 \sim \rightarrow \equiv \rightarrow

 \leftarrow

Outline

[Demand and supply](#page-1-0)

[Disaggregate demand models](#page-8-0)

- [Literature](#page-14-0)
	- 4 [A generic framework](#page-21-0)

5 [A simple example](#page-30-0) • [Example: one theater](#page-32-0) • [Example: two theaters](#page-40-0) [Case study](#page-45-0) **[Conclusion](#page-56-0)**

4 0 8

 QQ

ヨメ メヨメ

A simple example

Context

- \bullet C: set of movies
- Population of N individuals
- Competition: staying home watching TV

One theater – homogenous population

Alternatives

- Staying home: $U_{cn} = 0 + \varepsilon_{cn}$
- My theater: $U_{mn} = -10.0p_m + 3 + \varepsilon_{mn}$

Logit model ε_m i.i.d. EV(0,1)

Demand and revenues

Optimization

Solver

GLPK v4.61 under PyMathProg

Data

- \bullet $N = 1$
- $R = 1000$

Results

- Optimum price: 0.276
- \bullet Demand: 57.4%
- Revenues: 0.159

Demand and revenues

Heterogeneous population

Two groups in the population

$$
U_{mn}=-\beta_n p_m+c_n
$$

Demand and revenues

Optimization

Data

- $N = 3$
- $R = 500$

Results

- Optimum price: 0.297
- \bullet Customer 1 (fan): 52.4% [theory: 50.8%]
- Customer 2 (fan) : 49% [theory: 50.8%]
- Customer 3 (other) : 45.8% [theory: 43.4%]
- Demand: 1.472 (49%)
- Revenues: 0.437

 \leftarrow

 Ω

Demand and revenues

Two theaters, different types of films

4 日下

Michel Bierlaire (EPFL) [Behavior Models and Optimization](#page-0-0) 0ctober 14, 2017 41 / 66

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

 QQ

Two theaters, different types of films

Theater m

- Attractive for young people
- Star Wars Episode VII

Theater *k*

- Not particularly attractive for young people
- **Tinker Tailor Soldier Spy**

Heterogeneous demand

- Two third of the population is young (price sensitive)
- One third of the population is not (less price sensitive)

 200

Two theaters, different types of films

Data

- \bullet Theaters *m* and *k*
- \bullet $N = 9$
- $R = 50$
- $U_{mn} = -10p_m + (4)$, n = young
- $U_{mn} = -0.9p_m$, n = others
- $U_{kn} = -10p_k + (0)$, n = young
- $U_{kn} = -0.9p_k$, n = others

Theater m

- O Optimum price *m*: 0.390
- Young customers: 3.48 / 6
- O Other customers: 1.08 / 3
- Demand: 4.56 (50.7%)
- **•** Revenues: 1.779

Theater k

- Optimum price $k: 1.728$
- Young customers: 0.0 / 6
- O Other customers: 0.38 / 3

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

- **O** Demand: 0.38 (4.2%)
- **Revenues: 0.581**

画

 Ω

Theater *k*

• Cheap (half price)

• Star Wars Episode VIII

Two theaters, same type of films

Theater m

- **•** Expensive
- Star Wars Episode VII

Heterogeneous demand

- Two third of the population is young (price sensitive)
- One third of the population is not (less price sensitive)

 200

ia m≊

Two theaters, same type of films

Data

- \bullet Theaters m and k
- $N = 9$
- $R = 50$
- $U_{mn} = -10p + (4)$, n = young
- $U_{mn} = -0.9p$, n = others
- $U_{kn} = -10p/2 + (4)$, n = young
- $U_{kn} = -0.9p/2$, n = others

Theater m

- Optimum price *m*: 3.582
- Young customers: 0
- Other customers: 1.9
- Demand: 1.9 (31.7%)
- Revenues: 3.42

Theater k Closed

- 3

 QQ

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Outline

[Demand and supply](#page-1-0)

- [Disaggregate demand models](#page-8-0)
- [Literature](#page-14-0)
	- 4 [A generic framework](#page-21-0)

4.0.3

ÆP ⊳

 QQ

ヨメ メヨメ

4 f →

∍ ×

Challenge

- Select a real choice model from the literature
- Integrate it in an optimization problem.

Parking choices

- $N = 50$ customers
- $C = \{PSP, PUP, FSP\}$
- $C_n = C \quad \forall n$
- \bullet PSP: 0.50, 0.51, \dots , 0.65 (16 price levels)
- PUP: 0.70, 0.71, . . . , 0.85 (16 price levels)
- Capacity of 20 spots

イロト イ押ト イヨト イヨト

画

[Case study](#page-45-0)

Choice model: mixtures of logit model [\[Ibeas et al., 2014\]](#page-63-2)

$$
V_{FSP} = (\beta_{AT})AT_{FSP} + (\beta_{TD} T D_{FSP} + \beta_{OriginalMTLFSP})
$$
\n
$$
V_{PSP} = \frac{ASC_{PSP}}{ASC_{PSP}} + (\beta_{AT})AT_{PSP} + (\beta_{TD} T D_{PSP} + (\beta_{FEE}) FEE_{PSP}
$$
\n
$$
+ \beta_{FEE_{PSP(LowInc)}} FEE_{PSP} LowInc + \beta_{FEE_{PSP(Res)}} FEE_{PSP} Res
$$
\n
$$
V_{PUP} = \frac{ASC_{PUP} + (\beta_{AT})AT_{PUP} + (\beta_{TD} T D_{PUP} + (\beta_{FEE}) FEE_{PUP} Res}{FEE_{PUP(LowInc)}} FEE_{PUP} LowInc + \beta_{FEE_{PUP(Res)}} FEE_{PUP} Res
$$
\n
$$
+ \beta_{AgeVeh \le 3} AgeVeh \le 3
$$

e Parameters

- Circle: distributed parameters
- Rectangle: constant parameters
- Variables: all given but FEE (in bold)

 -1 -1 $+$

 Ω

Experiment 1: uncapacitated vs capacitated case (1)

- Capacity constraints are ignored
- Unlimited capacity is assumed
- 20 spots for PSP and PUP
- Free street parking (FSP) has unlimited capacity

イロト イ押ト イヨト イヨト

 QQ

[Case study](#page-45-0)

Experiment 1: uncapacitated vs capacitated case (2)

Uncapacitated

[Case study](#page-45-0)

Experiment 1: uncapacitated vs capacitated case (3)

Uncapacitated

Experiment 2: price differentiation by segmentation (1)

- Discount offered to residents
- Two scenarios (municipality)
	- **1** Subsidy offered by the municipality
	- 2 Operator obliged to offer reduced fees
- We expect the price to increase
	- \bullet PSP: {0.60, 0.64, . . . , 1.20}
	- PUP: $\{0.80, 0.84, \ldots, 1.40\}$

 200

[Case study](#page-45-0)

Experiment 2: price differentiation by segmentation (2)

Scenario 1

Scenario 2

Michel Bierlaire (EPFL) [Behavior Models and Optimization](#page-0-0) 0ctober 14, 2017 54 / 66

[Case study](#page-45-0)

Experiment 2: price differentiation by segmentation (3)

Scenario 1

Scenario 2

Michel Bierlaire (EPFL) [Behavior Models and Optimization](#page-0-0) 0ctober 14, 2017 55 / 66

≃

 QQQ

Other experiments

Impact of the priority list

- \bullet Priority list = order of the individuals in the data (i.e., random arrival)
- 100 different priority lists
- Aggregate indicators remain stable across random priority lists

Benefit maximization through capacity allocation

- 4 different capacity levels for both PSP and PUP: 5, 10, 15 and 20
- Optimal solution: PSP with 20 spots and PUP is not offered
- Both services have to be offered: PSP with 15 and PUP with 5

Outline

[Demand and supply](#page-1-0)

[Disaggregate demand models](#page-8-0)

- [Literature](#page-14-0)
	- 4 [A generic framework](#page-21-0)

4.0.3

n ⊳ 1

 QQ

 \mathbb{B} is a \mathbb{B} is

Summary

Demand and supply

- Supply: prices and capacity
- **O** Demand: choice of customers
- **o** Interaction between the two

Discrete choice models

- Rich family of behavioral models
- Strong theoretical foundations
- **•** Great deal of concrete applications
- Capture the heterogeneity of behavior
- **•** Probabilistic models

7 TRANSP-OR

ECOLE POLYTECHNIQUE

 Ω

- a = ≡

Optimization

Discrete choice models

- Non linear and non convex
- Idea: use utility instead of probability
- Rely on simulation to capture stochasticity

Proposed formulation

- **.** Linear in the decision variables
- **•** Large scale
- **•** Fairly general

Ongoing research

- Decomposition methods
- Scenarios are (almost) independent from each other (except objective function)
- Individuals are also loosely coupled (except for capacity constraints)

Bibliography I

Andersson, S.-E. (1998).

Passenger choice analysis for seat capacity control: A pilot project in scandinavian airlines.

International Transactions in Operational Research, 5(6):471–486.

Azadeh, S. S., Marcotte, P., and Savard, G. (2015). A non-parametric approach to demand forecasting in revenue management.

Computers & Operations Research, 63:23–31.

晶 Bekhor, S. and Prashker, J. (2001).

Stochastic user equilibrium formulation for generalized nested logit model.

Transportation Research Record: Journal of the Transportation Research Board, (1752):84–90.

- 3

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Bibliography II

Benati, S. (1999).

The maximum capture problem with heterogeneous customers. Computers & operations research, 26(14):1351–1367.

R Bierlaire, M. and Azadeh, S. S. (2016). Demand-based discrete optimization.

Technical Report 160209, Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne.

Daganzo, C. F. and Sheffi, Y. (1977). On stochastic models of traffic assignment.

Transportation science, 11(3):253–274.

 QQ

÷

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

Bibliography III

Dial, R. B. (1971).

A probabilistic multipath traffic assignment model which obviates path enumeration.

Transportation research, 5(2):83–111.

Some developments in equilibrium traffic assignment. Transportation Research Part B: Methodological, 14(3):243–255.

Gilbert, F., Marcotte, P., and Savard, G. (2014a). Logit network pricing. Computers & Operations Research, 41:291–298.

Gilbert, F., Marcotte, P., and Savard, G. (2014b). Mixed-logit network pricing.

Computational Optimization and Applications, 57(1):105–127.

K ロ X - 제 P X - 제 파 X - 파 파 파

Bibliography IV

Haase, K. and Müller, S. (2013).

Management of school locations allowing for free school choice. Omega, 41(5):847–855.

Hakimi, S. L. (1990).

Locations with spatial interactions: competitive locations and games. Discrete location theory, pages 439–478.

Ibeas, A., dell'Olio, L., Bordagaray, M., and de D. Ortðzar, J. (2014). Modelling parking choices considering user heterogeneity. Transportation Research Part A: Policy and Practice, 70:41 – 49.

- 2

 QQQ

イロト イ押ト イヨト イヨト

Bibliography V

Labbé, M., Marcotte, P., and Savard, G. (1998).

A bilevel model of taxation and its application to optimal highway pricing.

Management science, 44(12-part-1):1608–1622.

Marianov, V., Ríos, M., and Icaza, M. J. (2008). Facility location for market capture when users rank facilities by shorter travel and waiting times.

European Journal of Operational Research, 191(1):32–44.

Pacheco, M., Azadeh, S. S., Bierlaire, M., and Gendron, B. (2017). Integrating advanced demand models within the framework of mixed integer linear problems: A lagrangian relaxation method for the uncapacitated case.

In Proceedings of the 17th Swiss Transport Research Conference, Ascona, Switzerland.

Bibliography VI

Pacheco, M., Bierlaire, M., and Azadeh, S. S. (2016). Incorporating advanced behavioral models in mixed linear optimization.

Presented at TRISTAN IX, Oranjestad, Aruba.

- Serra, D. and Colomé, R. (2001). Consumer choice and optimal locations models: formulations and heuristics. Papers in Regional Science, 80(4):439–464.
	- Talluri, K. and Van Ryzin, G. (2004).

Revenue management under a general discrete choice model of consumer behavior.

Management Science, 50(1):15–33.

- 2

 QQ

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{B}$