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Demand and supply

Demand models

Supply = infrastructure

Demand = behavior, choices

Congestion = mismatch
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Demand and supply

Demand models

Usually in OR:

optimization of the supply

for a given (fixed) demand
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Demand and supply

Aggregate demand

Homogeneous population

Identical behavior

Price (P) and quantity (Q)

Demand functions: P = f (Q)

Inverse demand: Q = f −1(P)
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Demand and supply

Disaggregate demand

Heterogeneous population

Different behaviors

Many variables:

Attributes: price, travel time,
reliability, frequency, etc.
Characteristics: age, income,
education, etc.

Complex demand/inverse
demand functions.
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Demand and supply

Demand-supply interactions

Operations Research

Given the demand...

configure the system

Behavioral models

Given the configuration of
the system...

predict the demand
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Demand and supply

Demand-supply interactions

Multi-objective optimization

Minimize costs Maximize satisfaction
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Disaggregate demand models
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Disaggregate demand models

Choice models

Behavioral models

Demand = sequence of choices

Choosing means trade-offs

In practice: derive trade-offs
from choice models
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Disaggregate demand models

Choice models

Theoretical foundations

Random utility theory

Choice set: Cn
yin = 1 if i ∈ Cn, 0 if not

Logit model:

P(i |Cn) =
yine

Vin∑
j∈C yjne

Vjn

2000
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Disaggregate demand models

Logit model

Utility

Uin = Vin + εin

Choice probability

Pn(i |Cn) =
yine

Vin∑
j∈C yjne

Vjn
.

Decision-maker n

Alternative i ∈ Cn
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Disaggregate demand models

Variables: xin = (pin, zin, sn)

Attributes of alternative i : zin

Cost / price (pin)

Travel time

Waiting time

Level of comfort

Number of transfers

Late/early arrival

etc.

Characteristics of decision-maker n:
sn

Income

Age

Sex

Trip purpose

Car ownership

Education

Profession

etc.
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Disaggregate demand models

Demand curve

Disaggregate model

Pn(i |pin, zin, sn)

Total demand

D(i) =
∑
n

Pn(i |pin, zin, sn)

Difficulty

Non linear and non convex in pin and zin
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Literature

Stochastic traffic assignment

Features

Nash equilibrium

Flow problem

Demand: path choice

Supply: capacity
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Literature

Selected literature

[Dial, 1971]: logit

[Daganzo and Sheffi, 1977]: probit

[Fisk, 1980]: logit

[Bekhor and Prashker, 2001]: cross-nested logit

and many others...
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Literature

Revenue management

Features

Stackelberg game

Bi-level optimization

Demand: purchase

Supply: price and capacity
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Literature

Selected literature

[Labbé et al., 1998]: bi-level programming

[Andersson, 1998]: choice-based RM

[Talluri and Van Ryzin, 2004]: choice-based RM

[Gilbert et al., 2014a]: logit

[Gilbert et al., 2014b]: mixed logit

[Azadeh et al., 2015]: global optimization

and many others...
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Literature

Facility location problem

Features

Competitive market

Opening a facility impact the costs

Opening a facility impact the demand

Decision variables: availability of the
alternatives

Pn(i |Cn) =
yine

Vin∑
j∈C yjne

Vjn
.
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Literature

Selected literature

[Hakimi, 1990]: competitive location (heuristics)

[Benati, 1999]: competitive location (B & B, Lagrangian relaxation,
submodularity)

[Serra and Colomé, 2001]: competitive location (heuristics)

[Marianov et al., 2008]: competitive location (heuristic)

[Haase and Müller, 2013]: school location (simulation-based)
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A generic framework

A linear formulation

Utility function

Uin = Vin + εin =
∑
k

βkxink + f (zin) + εin.

Simulation

Assume a distribution for εin

E.g. logit: i.i.d. extreme value

Draw R realizations ξinr ,
r = 1, . . . ,R

The choice problem becomes
deterministic
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A generic framework

Scenarios

Draws

Draw R realizations ξinr , r = 1, . . . ,R

We obtain R scenarios

Uinr =
∑
k

βkxink + f (zin) + ξinr .

For each scenario r , we can identify the largest utility.

It corresponds to the chosen alternative.
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A generic framework

Capacities

Demand may exceed supply

Each alternative i can be
chosen by maximum ci
individuals.

An exogenous priority list is
available.

The numbering of individuals is
consistent with their priority.
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A generic framework

Priority list

Application dependent

First in, first out

Frequent travelers

Subscribers

...

In this framework

The list of customers must be sorted
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A generic framework

References

Technical report: [Bierlaire and Azadeh, 2016]

TRISTAN presentation: [Pacheco et al., 2016]

STRC proceeeding: [Pacheco et al., 2017]
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A generic framework

Demand model

Population of N customers (n)

Choice set C (i)

Cn ⊆ C: alternatives considered by customer n

Behavioral assumption

Uin = Vin + εin

Vin =
∑

k βinkx
e
ink + qd(xd)

Pn(i |Cn) = Pr(Uin ≥ Ujn, ∀j ∈ Cn)

Simulation

Distribution εin

R draws ξin1, . . . , ξinR

Uinr = Vin + ξinr
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A generic framework

Supply model

Operator selling services to a market

Price pin (to be decided)
Capacity ci

Benefit (revenue− cost) to be maximized

Opt-out option (i = 0)

Price characterization

Continuous: lower and
upper bound

Discrete: price levels

Capacity allocation

Exogenous priority list of customers

Assumed given

Capacity as decision variable
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A generic framework

MILP (in words)

MILP

max benefit

subject to utility definition

availability

discounted utility

choice

capacity allocation

price selection
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A simple example

A simple example

Context

C: set of movies

Population of N individuals

Competition: staying home
watching TV
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A simple example Example: one theater

One theater – homogenous population

Alternatives

Staying home: Ucn = 0 + εcn

My theater: Umn = −10.0pm + 3 + εmn

Logit model

εm i.i.d. EV(0,1)
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A simple example Example: one theater

Demand and revenues
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A simple example Example: one theater

Optimization

Solver

GLPK v4.61 under PyMathProg

Data

N = 1

R = 1000

Results

Optimum price: 0.276

Demand: 57.4%

Revenues: 0.159
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A simple example Example: one theater

Demand and revenues
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A simple example Example: one theater

Heterogeneous population

Two groups in the population

Umn = −βnpm + cn

Young fans: 2/3

β1 = −10, c1 = 3

Others: 1/3

β2 = −0.9, c2 = 0
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A simple example Example: one theater

Demand and revenues
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A simple example Example: one theater

Optimization

Data

N = 3

R = 500

Results

Optimum price: 0.297

Customer 1 (fan): 52.4%
[theory: 50.8 %]

Customer 2 (fan) : 49%
[theory: 50.8 %]

Customer 3 (other) : 45.8%
[theory: 43.4 %]

Demand: 1.472 (49%)

Revenues: 0.437
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A simple example Example: one theater

Demand and revenues

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

D
em

an
d

R
ev

en
u

es

Price

Revenues
Demand

Michel Bierlaire (EPFL) Behavior Models and Optimization October 14, 2017 40 / 66



A simple example Example: two theaters

Two theaters, different types of films
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A simple example Example: two theaters

Two theaters, different types of films

Theater m

Attractive for young people

Star Wars Episode VII

Theater k

Not particularly attractive for
young people

Tinker Tailor Soldier Spy

Heterogeneous demand

Two third of the population is young (price sensitive)

One third of the population is not (less price sensitive)
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A simple example Example: two theaters

Two theaters, different types of films

Data

Theaters m and k

N = 9

R = 50

Umn = −10pm + 4 , n =young

Umn = −0.9pm, n =others

Ukn = −10pk + 0 , n =young

Ukn = −0.9pk , n =others

Theater m

Optimum price m: 0.390

Young customers: 3.48 / 6

Other customers: 1.08 / 3

Demand: 4.56 (50.7%)

Revenues: 1.779

Theater k

Optimum price k: 1.728

Young customers: 0.0 / 6

Other customers: 0.38 / 3

Demand: 0.38 (4.2%)

Revenues: 0.581
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A simple example Example: two theaters

Two theaters, same type of films

Theater m

Expensive

Star Wars Episode VII

Theater k

Cheap (half price)

Star Wars Episode VIII

Heterogeneous demand

Two third of the population is young (price sensitive)

One third of the population is not (less price sensitive)
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A simple example Example: two theaters

Two theaters, same type of films

Data

Theaters m and k

N = 9

R = 50

Umn = −10p + 4 , n =young

Umn = −0.9p, n =others

Ukn = −10p/2 + 4 , n =young

Ukn = −0.9p/2, n =others

Theater m

Optimum price m: 3.582

Young customers: 0

Other customers: 1.9

Demand: 1.9 (31.7%)

Revenues: 3.42

Theater k

Closed
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Case study
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Case study

Challenge

Select a real choice model from
the literature

Integrate it in an optimization
problem.
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Case study

Parking choices

N = 50 customers

C = {PSP,PUP,FSP}
Cn = C ∀n

PSP: 0.50, 0.51, . . . , 0.65 (16 price levels)

PUP: 0.70, 0.71, . . . , 0.85 (16 price levels)

Capacity of 20 spots
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Case study

Choice model: mixtures of logit model [Ibeas et al., 2014]

VFSP = βAT ATFSP + βTD TDFSP + βOriginINT FSP
OriginINT FSP

VPSP = ASCPSP + βAT ATPSP + βTD TDPSP + βFEE FEEPSP

+ βFEEPSP(LowInc)
FEEPSPLowInc + βFEEPSP(Res)

FEEPSPRes

VPUP = ASCPUP + βAT ATPUP + βTD TDPUP + βFEE FEEPUP

+ βFEEPUP(LowInc)
FEEPUPLowInc + βFEEPUP(Res)

FEEPUPRes

+ βAgeVeh≤3 AgeVeh≤3

Parameters

Circle: distributed parameters
Rectangle: constant parameters

Variables: all given but FEE (in bold)
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Case study

Experiment 1: uncapacitated vs capacitated case (1)

Capacity constraints are ignored

Unlimited capacity is assumed

20 spots for PSP and PUP

Free street parking (FSP) has
unlimited capacity
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Case study

Experiment 1: uncapacitated vs capacitated case (2)
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Case study

Experiment 1: uncapacitated vs capacitated case (3)

Uncapacitated
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Case study

Experiment 2: price differentiation by segmentation (1)

Discount offered to residents

Two scenarios (municipality)
1 Subsidy offered by the municipality
2 Operator obliged to offer reduced fees

We expect the price to increase

PSP: {0.60, 0.64, . . . , 1.20}
PUP: {0.80, 0.84, . . . , 1.40}
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Case study

Experiment 2: price differentiation by segmentation (2)

Scenario 1
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Case study

Experiment 2: price differentiation by segmentation (3)

Scenario 1
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Case study

Other experiments

Impact of the priority list

Priority list = order of the individuals in the data (i.e., random arrival)

100 different priority lists

Aggregate indicators remain stable across random priority lists

Benefit maximization through capacity allocation

4 different capacity levels for both PSP and PUP: 5, 10, 15 and 20

Optimal solution: PSP with 20 spots and PUP is not offered

Both services have to be offered: PSP with 15 and PUP with 5
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Conclusion

Summary

Demand and supply

Supply: prices and capacity

Demand: choice of customers

Interaction between the two

Discrete choice models

Rich family of behavioral models

Strong theoretical foundations

Great deal of concrete applications

Capture the heterogeneity of behavior

Probabilistic models
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Conclusion

Optimization

Discrete choice models

Non linear and non convex

Idea: use utility instead of probability

Rely on simulation to capture stochasticity

Proposed formulation

Linear in the decision variables

Large scale

Fairly general
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Conclusion

Ongoing research

Decomposition methods

Scenarios are (almost) independent from each other (except objective
function)

Individuals are also loosely coupled (except for capacity constraints)
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