Modelling for the Behaviour Modelling Exercise

15th October, 2017, 16th Behavior Modeling Workshop in Transportation Networks, The University of Tokyo

IIT Bombay

Centre for Urban Science and Engineering

Team Members: Nitish Kalyanpad (M2), Ahana Sarkar (D1), Karan Barpete (D2)

Yokohama City

Centre for Urban Science and Engineering

SUMMER SCHOOL ON TRAVEL BEHAVIOUR MODELLING, 2017

Share of Travel Purpose

GROUP A

Time taken by different Modes: (O-D Spider map)

GROUP A

SUMMER SCHOOL ON TRAVEL **BEHAVIOUR MODELLING, 2017**

Bus

Bicycle

Centre for Urban Science and Engineering

Walk

AS(D1) KB(D2) NGK(M2) AJ

Rail

SUMMER SCHOOL ON TRAVEL BEHAVIOUR MODELLING, 2017

Mode of travel

Problem Statement

Irban Science and Engineeri

Increase in Japan's ageing population

- POPULATION TO SHRINK 1/3RD BY 2050..
- The number of people is predicted to tumble from just over 127 million in 2015 to 88 million in 2065, dropping further to **51 million by 2115**.
- From 1950 to 2015, the share of population age 65+ grew from just under **5% to over 25%**.
- The population aged 80+ has risen even faster, from 0.4% in 1950 to 7.3% in 2013 (OECD average = 4.1%).
- Japan's median age was 45.9 years in 2013, compared to a world average of 29 years and an OECD median age of 38.7 for the same year. Based on current projections, the Japanese government expects Japan's population to decrease by 22-23% between 2010 and 2050, with the elderly (65+ years) accounting for 40% of the population.

AS(D1

JAPAN GROWS OLD

SUMMER SCHOOL ON TRAVEL

Problem Statement

Urban Science and Enaineerin

Overcrowding of metro

This overcrowded transportation system carries **8.7 million riders daily**, making it the busiest metro in the world.

SUMMER SCHOOL ON TRAVEL

Objectives

- 1. To investigate the **interaction of age of users with respect to mode choice**. This attempt will help in incorporating comfort and convenience specially for elderly during travel.
- 2. To understand the **mode choice behavior during peak hours** (both morning and evening timings have been considered).
- 3. Both MXL and MNL have been used in this case to understand the efficiency of model.

Research Flow/ Methodology

Reconnaissance:

Understanding the transportation of overcrowding in major metro areas in Japan. Understanding the aging population of Japan and their travel behavior, by analyzing statistics for **descriptors** and **spatial correlation** on person probe data.

Modelling

- Understanding the results of different models and comparing the results to find the **superior model**.
- Preparing Prediction Success Matrix
- Plotting of **elasticities across**

space.

Centre for Urban Science and Engineering ... improving quality of urban life ...

IIT BOMBAY

2

Identification of Objectives:

- To investigate the interaction of age of users with respect to mode choice. This attempt will help in incorporating comfort and convenience specially for working class travellers during travel.
- To understand the **mode choice behavior during peak hours** (both morning and evening timings have been considered).
 - Both MXL and MNL have been used in this case to understand the efficiency of model.

Identification of appropriate variables

Identify the **variables / interaction variables** for age based and peak hour based **policy analysis**. Identifying appropriate modelling technique for better prediction and taste variation.

Using random parameter model **understand the taste variation** in the study area.

Utility Equations

calculate the utility function: :introduce the desired explanatory variables in the function

time # Fare # constant

Bus <- Data\$ModeAvailableBus *exp(d1*Data\$TotalTimeBus/100 + b2*matrix(1,nrow =hh.ncol=1))

Car <- Data\$ModeAvailableCar_*exp(d1*Data\$TimeCar/100 + b3*matrix(1,nrow =hh,ncol=1))

Bike <- Data\$ModeAvailableBike *exp(d1*Data\$TimeBike/100 + b4*matrix(1,nrow =hh,ncol=1))

Walk <- Data\$ModeAvailableWalk *exp(d1*Data\$TimeWalk/100 + b7*Data\$Age)

SUMMER SCHOOL ON TRAVEL BEHAVIOUR MODELLING, 2017

Results (Test outputs Comparison)

> ## L(0) > print(L0) [1] -2135.675 > ## LL > print(LL) [1] -1306.495> ##rho-square > print((L0-LL)/L0) [1] 0.388252 > ## adjusted rho-square MXL output > print((L0-(LL-length(b)))/L0) [1] 0.3840379 > ##estimated parameter values > print(b) 2.325458380 0.570460411 0.595285320 0.789269474 -9.581692389 0.873855179 0.307935134 [1] [8] 0.003106622 0.049827158 > ## t-statistic > print(tval) 3.0429503 -20.2102279 7.9176205 2.2642065 2.7916645 2.0760127 0.7337743 1.9498257 [1] 7.8924131 [9] > ## L(0) > print(L0) [1] -2135.675 > ## LL > print(LL) [1] -1302.748> ##rho-square > print((L0-LL)/L0) **MNL** output [1] 0.3900065 > ## adjusted rho-square > print((L0-(LL-length(b)))/L0) [1] 0.3862606 > ##estimated parameter values > print(b) 0.704667250 - 10.250375159[1] 2.120489807 0.601190973 0.662505748 0.605573358 0.007110351 0.052801164 > ## t-statistic > print(tval) Centre for Urban Science and Engineering 7.117928 2.043361 2.506119 2.689903 -20.265380 3.968759 1.641621 8.299826 [1] ... improving quality of urban life ... **IIT BOMBAY** AS(D1) KB(D2) NGK(M2) AJ

Results (Test outputs Comparison)

> ## L(0) > print(L0) [1] -2135.675 > ## LL > print(LL) [1] -1292.804 > ##rho-square > print((L0-LL)/L0) [1] 0.3946622 > ## adjusted rho-square > print((L0-(LL-length(b)))/L0) [1] 0.3904481 > ##estimated parameter values > print(b) [1] 1.962058836 0.175461223 0.357921092 0.421493803 -9.569383923 0.666301942 0.275511957 0.004911614 0.044752790 > ## t-statistic > print(tval)

 $[1] \quad 7.2696035 \quad 0.6456395 \quad 1.5173468 \quad 1.8077461 \ -20.1510796 \quad 2.1096568 \quad 1.8612071 \quad 1.1555494 \quad 7.8094935 \ .20075666 \quad 1.8612071 \quad 1.1555494 \quad 7.8094935 \ .2007566 \quad 1.8612071 \quad 1.1555494 \quad 7.8094935 \ .2007566 \quad 1.8612071 \quad 1.1555494 \quad 7.8094935 \ .200756 \quad 1.807766 \quad 1.807766$

Stats: 1 – LL(B) / LL(0) = 0.39466 1 – LL(B)/ LL(C) = 0.40155

IIT BOMBAY

AS(D1) KB(D2) NGK(M2) AJ

GROUPA

MXL improved output

SUMMER SCHOOL ON TRAVEL BEHAVIOUR MODELLING, 2017

- > #aggregate elasticitiesTrain
 > p=colSums(PTrain*elasticityTrain)
- > q=colSums(PTrain)
- > r=p/q
- > r
- [1] -1.653169
- >
- > #aggregate elasticitiesbus
- > t=colSums(PBus*elasticityBus)
 > u=colSums(PBus)
- > s=t/u
- > s
- [1] -1.195407
- >

> #aggregate elasticitiesBike
> v=colSums(PBike*elasticityBike)
> w=colSums(PBike)
> y=v/w

> y [1] -0.8447646

>

- > #aggregate elasticitiesCar
- > e=colSums(PCar*elasticityCar)
- > f=colSums(PCar)
- > g=e/f
- > g
- [1] -1.216221
- >
- > #aggregate elasticitiesWalk
- > h=colSums(PWalk*elasticityWalk)
- > i=colSums(PWalk)
- > j=h/i

```
> j
[1] -0.9213409
```

```
Aggregate Elasticity
```

SUMMER SCHOOL ON TRAVEL BEHAVIOUR MODELLING, 2017

Results (Prediction Success Comparison) MNL

	Predicted Group								
Obs. Group	Rail	Bicycle	Bus	Car	Walk	Row Total	Observed Share		
Rail	446	2	6	68	6	528	34.69%		
Bicycle	53	64	0	43	51	211	13.86%		
Bus	0	1	0	36	4	41	2.69%		
Car	67	31	0	346	68	512	33.64%		
Walk	19	35	0	7	169	230	15.11%		
Column Total	585	133	6	500	298	1522	100.00%		
Predicted Share	38.44%	8.74%	0.39%	32.85%	19.58%	Overall	67.35%		
% Correctly Predicted	84.47%	30.33%	0.00%	67.58%	73.48%	Success			

MXL

	Predicted Group								
Obs. Group	Rail	Bicycle	Bus	Car	Walk	Row Total	Observed Share		
Rail	454	3	7	58	6	528	34.69%		
Bicycle	56	83	0	21	51	211	13.86%		
Bus	1	2	0	34	4	41	2.69%		
Car	80	49	0	318	65	512	33.64%		
Walk	22	39	0	4	165	230	15.11%		
Column Total	613	176	7	435	291	1522	100.00%		
Predicted Share	40.28%	11.56%	0.46%	28.58%	19.12%	Overall	67.02%		
% Correctly Predicted	85.98%	39.34%	0.00%	62.11%	71.74%	Success	07.02%		

IIT BOMBAY

Results

... improving quality of urban life ... IIT BOMBAY

GROUPA SUMMER SCHOOL ON TRAVEL BEHAVIOUR MODELLING, 2017

Inferences:

- Total trips: 1522
- Peak hour trips: 820
- Non peak hour trips: 702
- Morning peak hour: 7AM to 10AM
- Evening peak hour: 5PM to 9PM

Spatial Analysis (MXL and MNL Comparison)

Bike: Probabilities peak hour

MXL

MNL

Inferences:

AS(D1) KB(D2) NGK(M2) AJ

SUMMER SCHOOL ON TRAVEL

Spatial Analysis

Bus: Probabilities peak hour

MXL MNL

Inferences:

AS(D1) KB(D2) NGK(M2) AJ

SUMMER SCHOOL ON TRAVEL

Spatial Analysis

Car: Probabilities peak hour

MXL MNL

Inferences:

AS(D1) KB(D2) NGK(M2) AJ

SUMMER SCHOOL ON TRAVEL

Spatial Analysis

Train: Probabilities peak hour

MXL MNL

Inferences:

AS(D1) KB(D2) NGK(M2) AJ

SUMMER SCHOOL ON TRAVEL

Spatial Analysis

Walk: Probabilities peak hour

MXL MNL

Centre for Urban Science and Engineering ... improving quality of urban life ... IIT BOMBAY **Inferences:**

AS(D1) KB(D2) NGK(M2) AJ

SUMMER SCHOOL ON TRAVEL

Spatial Analysis

Walk: Elasticities peak hour

MXL MNL

Inferences:

AS(D1) KB(D2) NGK(M2) AJ

SUMMER SCHOOL ON TRAVEL

Spatial Analysis

Bike: Elasticities peak hour

MXL MNL

Inferences:

Centre for Urban Science and Engineering ... improving quality of urban life ...

IIT BOMBAY

AS(D1) KB(D2) NGK(M2) AJ

SUMMER SCHOOL ON TRAVEL

SUMMER SCHOOL ON TRAVEL

BEHAVIOUR MODELLING, 2017

Spatial Analysis

Bus: Elasticities peak hour

MXL MNL

Centre for Utban Science and Engineering ... improving quality of urban life ... IIT BOMBAY **Inferences:**

Spatial Analysis

Car: Elasticities peak hour

MXL MNL

Centre for Urban Science and Engineering ... improving quality of urban life ... IIT BOMBAY **Inferences:**

= AS(D1) KB(D2) NGK(M2) AJ

SUMMER SCHOOL ON TRAVEL

Spatial Analysis

Train: Elasticities peak hour

MXL MNL

Centre for Urban Science and Engineering ... improving quality of urban life ... IIT BOMBAY **Inferences:**

AS(D1) KB(D2) NGK(M2) AJ

SUMMER SCHOOL ON TRAVEL

Thank You