Nested Logit Model of Combined Section for Travel Mode and Departure Time

Team C Linghan Zhang , Tuqiang Zhou , Weiyan Zong

Mobilities & Urban Policy Lab

Sun	Mon	Tue	Wen	Thu	Fri	Sat
				29	30	31
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	

20 weekdays + 10 weekends & holidays

NL model structure with travel mode located in lower layer

$$\begin{split} V_{T1} &= wn1^* x_{weekend} + g1^* x_{female} + \mu_1 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_1 \right) \right) \\ V_{T2} &= wn1^* x_{weekend} + d^* x_{ODdistan\,ce} + \mu_2 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_2 \right) \right) \\ V_{T3} &= g2^* x_{female} + wn2^* x_{weekend} + \mu_3 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_3 \right) \right) \\ V_{T4} &= d^* x_{ODdistan\,ce} + sp^* x_{weekday} * x_{shopping} + \mu_4 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_4 \right) \right) \\ V_{T5} &= g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \\ x_{weekend} , x_{weekday} , x_{female} , x_{shopping} + \mu_4 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_4 \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in Mode} \exp \left(\sum_{m \in Mode} \exp \left(V_m / \mu_5 \right) \right) \right) \\ x_{m \in Mode} = g1^* x_{female} + \mu_5 \ln \left(\sum_{m \in$$

$$V_{walking} = c_{walking} + t * x_{traveltime}$$

$$V_{bicycle} = c_{bicycle} + t * x_{traveltime}$$

$$V_{rail} = t * x_{traveltime}$$

$$V_{bus} = c_{bus} + t * x_{traveltime}$$

$$V_{car} = c_{car} + t * x_{traveltime}$$

- Dummy vurtubles

 $x_{ODdistance}$ - OD distance(km)

Mode={walking, bicycle, rail, bus, car}

Mobilities & Urban Policy Lab

	Variable	Estimation	Variable	Estimation	
<i>Departure</i> <i>time choice</i>	d(km)	0.019***	μ1	0.2064***	
	wn1	-1.2347***	μ2	0.5326	
	wn2	1.2657***	μ3	0(base)	
	g1	-1.1341***	μ4	0.5134	
	<i>g2</i>	0.7908***	μ5	0.3564*	
	sp	1.5602***	Sample size	1522	
Travel mode choice	t(h)	-0.8748***	Rho-squared	0.221	
	Cwalking	0.2774***	Ajusted Rho-	0.223	
	Cbicycle	-0.0832	squared	Significance level *** - 99.9% ** - 99% * - 95% 90%	
	Cbus	-1.8644***			
	Ccar	0.1538***			

Departure time and travel mode

- The substitutability between different travel modes exists when decision makers decide to depart in period 1 and 5 as the estimation results of μ 1 and μ 5 are significant.
- The sign of OD distance in the utility functions of period 2 and 4 are positive.
- Women have more obvious preferences when making departure time choices based on the parameter signs of female dummies.

Shopping behavior in evening peak hours (based on the findings of the relationship between departure time choice and travel mode choice, and between departure time choice and travel purpose)

• Discount in restaurant and supermarket could start from 8 pm. This may make some commuters to change their schedules, such as delaying their leaving time from work.

Women-only passenger car (based on the finding of departure time choice and gender)

• It is possible to adjust the number of WOPC according to women preferences.

Thank you !