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Background

• Demand forecasting for unknown goods and services
• If autonomous driving becomes a reality, will you buy an autonomous 

vehicle?

• If you buy an autonomous vehicle, will you live in the city center or in 
the suburbs?

• Do you want to use an autonomous mobile gym that comes to your 
home?
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Stated Preference (SP) Survey

• Preference data that observe preference in a hypothetical situation 
is called Stated Preference (SP).
• Specifically, discrete choice data is referred to as stated choice (SC).

• SP surveys enable us to forecast the demand for new 
transportation services that do not currently exist.

• Differences from questionnaire surveys
• Controls for the effects of trade-offs between attributes of alternatives 

based on experimental design.

• responses are used to estimate behavioral models.
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Example of Stated Preference Survey

• Which transport mode will you use?
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Subway Bus LRT

Total travel time 25 min 40 min 30 min

Fee 220 JPY 200 JPY 250 JPY

Access time 8 min 2 min 5 min

Egress time 5 min 1 min 4 min

Frequency 10 per hour 6 per hour 5 per hour

Choice



Example of Stated Preference Survey

• Which transport mode will you use?
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Subway Bus LRT

Total travel time 38 min 22 min 17 min

Fee 400 JPY 250 JPY 350 JPY

Access time 2 min 5 min 4 min

Egress time 3 min 7 min 8 min

Frequency 5 per hour 8 per hour 4 per hour

Choice

By controlling for the trade-offs between the attributes of each option, 
SP survey enable us to estimate sensitivity with respect to each attribute.



Hypothetical bias in SP survey

1. Experimental Scenario Uncertainty
• Ambiguity and uncertainty about unfamiliar goods and services

• Validity of hypothetical scenarios

2. Heterogeneity of respondents
• Information and knowledge possessed by each respondent

• Preference heterogeneity

3. Dishonest response
• Survey credibility, including policy maneuvering bias and justification bias

• Survey stability, including response fatigue and cold start issues
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Method to eliminate inaccurate responses

• In contrast to the quality control of crowdsourcing in the field 
of human computation

7Crowdsourcing Stated Preference

Td4eva Td4eva Td4eva aaaa Self-driving Self-driving Normal Normal

Do you want a self-driving car or 

a normal car?



Spam worker detection in crowdsourcing

• Detect spam workers by calculating the percentage of correct 
answers.

• Detect spam workers by having them solve the same problem and 
deciding the answer by majority vote
• Both are inefficient.

• Latent class model (Dawid and Skene, 1979; Boxall and Adamowicz, 2002) can 
estimate the workers’ ability and ground truth simultaneously.
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ground truth worker’s ability

EM algorithm

Classification of workers' skills can lead to 
detection of spam workers.



However, there is no ground truth in the case of SP
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Crowdsourcing Stated Preference

Td4eva Td4eva Td4eva aaaa

Do you want a self-driving car or 

a normal car?

Self-driving Self-driving Self-driving Normal

Detected as spam
We cannot determine whether a response is a spam 
response (a random response) or a personal preference, 
even if it is in the minority.



The method to induce information and 
knowledge possessed by respondents

• Can we detect heterogeneity in respondent preferences and 
dishonest responses?

• Bayesian Truth Serum (Prelec, 2004)

• A kind of proper scoring rule. (Johnson et al, 1990)

• In this mechanism, responses are scored such that the highest score is 

obtained when the true subjective probability is answered.

• BTS can be used to

• Improve the accuracy of survey results

• Identification of superior respondents

• Behavioral change of respondents (truth-telling)

• We will apply the BTS to SP survey.
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Bayesian truth serum

• The original BTS is the mechanism design to make a survey to 
answer things that are difficult to answer under normal conditions.
• e.g., Have you ever shoplifted?, Are you racist?

• For example,
• Q1: Have you ever shoplifted?             Yes/No

• Q2: How many people do you think would answer Yes to Q1? ％
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Q1: Any category question
Q2: Questions that make you predict "how others will respond to Q1."



BTS Score

• Respondent i’s response of Q1 is denoted by 𝑥𝑖𝑘 and the 
response of Q2 is denoted by 𝑦𝑖𝑘.

• The BTS score is defined as
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BTS Score
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Q1 Have you ever 
shoplifted?             

Q2 How many people do you 
think would answer Yes to Q1? 

BTS Score

Yes 20% +0.31

No 10% -0.18

Yes 5% +0.09

No 30% -0.09

・・・ ・・・ ・・・

No 25% +0.32

Percentage of Yes
25%

Predicted percentage of Yes
18%

“Good” response

“Poor” response



BTS Score

• Information score is
• If the "Actual Percentage" is higher than the "Predicted Average", 

those who chose the option will receive a high score.

• This is the rule that the majority gets a higher score compared to 
everyone else's prediction.

• Prediction score is
• The closer the prediction is to the actual percentage, the higher the 

score.
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The characteristics of BTS

• Scoring does not require an external ”ground truth”
• No need for verification that the person is a shoplifter.

• Scoring independent of response distribution
• Possibility of high scores even for minority opinions

• It is often the case that a small group of people with some expertise, 
or a group of actual criminals, know more about the real situation 
than the general public.

• Incentive compatibility
• Linking BTS scores to incentives can elicit desired behavior (truth-

telling)

• To increase the BTS score, it is incentive compatible to answer 
honest choices and true subjective probabilities. 15



Research idea: BTS-SP + Latent class

• Detect dishonest spam respondents using both choice and 
predictive responses, and continuously separate spam 
respondents from those useful for model estimation.

• BTS scores accurately identify spam responses and responses 
due to preference heterogeneity.

• In doing so, we improve the predictive performance of the model 
and clarify the responses to the important variables.
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• Which transport mode will you use?

• What percentage of people do you think would make the 
same choice you did?

The difference from experimental design of SP 
survey

17Prediction 80 %
Just add this!

Subway Bus LRT

Total travel time 25 min 40 min 30 min

Fee 220 JPY 200 JPY 250 JPY

Access time 8 min 2 min 5 min

Egress time 5 min 1 min 4 min

Frequency 10 per hour 6 per hour 5 per hour

Choice



Approach of our analysis
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responses (𝑥𝑖𝑘, 𝑦𝑖𝑘), choice and predictionObserved data 
from BTS-SP survey

Make a choice model: 𝑃(𝑥𝑖𝑘) from 𝑥𝑖𝑘

Calculate a pseudo BTS score (pseudo information score and 
pseudo prediction score) for each respondent: 𝐼𝑆𝑖 , 𝑃𝑆𝑖

Subject group

No-spam

Spam

choice model of class 1

choice model of class 2

random response model

membership function using 𝐼𝑆𝑖, 𝑃𝑆𝑖

membership function using 
socioeconomic characteristics

Two stage latent class model using pseudo BTS scores

Make a prediction model: 𝑃(𝑦𝑖𝑘) from 𝑦𝑖𝑘



Pseudo BTS score

• BTS score

• Pseudo BTS score
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An example of BTS-SP survey

• Demand forecasting for mobile gym

• Attributes of each option
• Availability of personal trainer
• Monthly Fee
• Distance from home
• Business Hours
• Availability of swimming pools
• Availability of parking
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VS online gym, gym



The result of pseudo BTS score
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IS

PS

• High IS = Users for whom models 
are "easy to guess".

• Low IS = Users for whom the 
model is "hard to guess".

• PS variation is significantly greater 
than IS variation.

• Low IS does not necessarily mean 
low PS.

• They are not easily correlated.



Detection of spam respondents
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Estimation of spam respondent probability 
for each user

• Spam respondent probability tends to increase with lower PS 
and decrease with higher PS.

𝑃𝑖,𝑠𝑝𝑎𝑚 =
exp(𝛽1 ⋅ 𝑥𝑖,𝐼𝑆 + 𝛽2 ⋅ 𝑥𝑖,𝑃𝑆 + 𝛽3)

1 + exp(𝛽1 ⋅ 𝑥𝑖,𝐼𝑆 + 𝛽2 ⋅ 𝑥𝑖,𝑃𝑆 + 𝛽3)

Membership function of spam respondents

Parameter estimates

IS 4.804

PS 0.0044

constant -0.824



• Model performance

• Number of model parameters is almost the same as the normal latent class 
model (+4), but model performance is greatly improved.

• The difference is created by the pseudo BTS score, which scores the 
responses of each subject in the population.
• Sort "honest respondents" who respond to attributes from "spam respondents" who 

do not.

Improvement of model performance
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MNL Latent MNL Pseudo BTS
Latent MNL

# of parameters 15 27 31

# of observations 7902 (1317) 7902 (1317) 7902 (1317)

Initial LL -5477.249 -5477.249 -5477.249

final LL -4456.009 -4384.219 -3935.282

likelihood ratio 0.184 0.195 0.276



Summary

• Demand forecasting for unknown goods and services 
remains an important challenge.

• We proposed a new experimental design, the BTS-SP survey, 
to overcome the problems of classical SP surveys and to 
detect dishonest responses.

• Two-level latent class model estimation using pseudo BTS 
score.
• Significantly improved model performance over naïve latent class 

models by identifying the preference heterogeneity and detecting 
spam respondents.
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