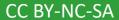
The 23rd Summer Course Behavior Modeling in Transportation Networks

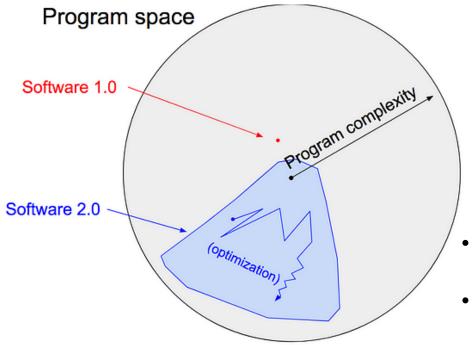


Statistical Estimation with Machine Learning

Junji Urata

September 12, 2024

Outline

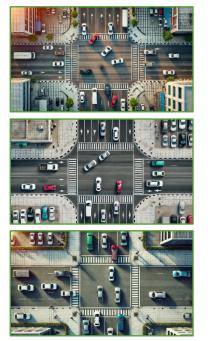

- 1.Introduction
- 2.Un-supervised learning
- **3.Supervised learning**
 - 1. Data preparation
 - 2.Evaluation
 - **3.Estimation**
 - 4.Model
 - **1.Neural Network**
 - 2.Support Vector Machine Classification

What is Machine Learning?

Arthur Samuel (1959)

"Field of study that gives computers the ability to learn without being explicitly programmed"

Software 2.0 Andrej Karpathy (2017)



- In the realm of program complexity and data, there are countless possible models.
- Software 2.0 is about searching for the optimal model from the complexity.

What is Machine Learning?

- In Machine learning, we program the method of learning itself so that the computer can discover rules from accumulated data
- What we program is not how to recognize something, but how to learn.
- The goal of machine learning is to correctly predict results even for unknown data that is not in the training data

Training Data

Generalization (Discover rules)

Applying Machine learning for what?

Demand forecasting

- The power demand for the day is predicted based on the weather.
- Predicting road traffic demand of each link

Product recommendations

Displaying recommended products on Amazon based on past purchase data
 Recommending transportation options in Mobility as a Service (MaaS)

Anomaly detection

- Predicting printer failures in advance based on past failure data
- Detecting congestion or traffic accidents

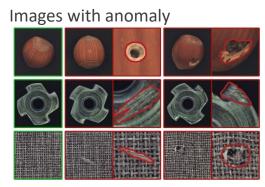
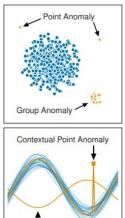
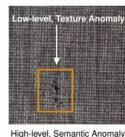
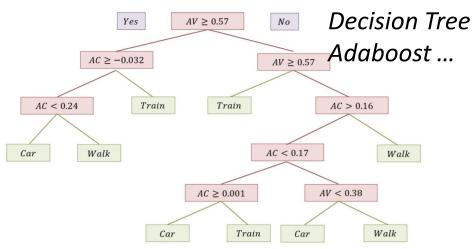
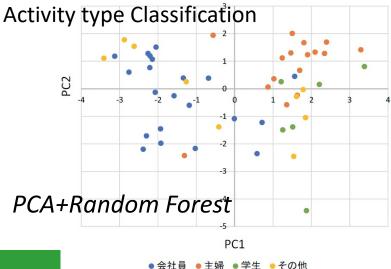




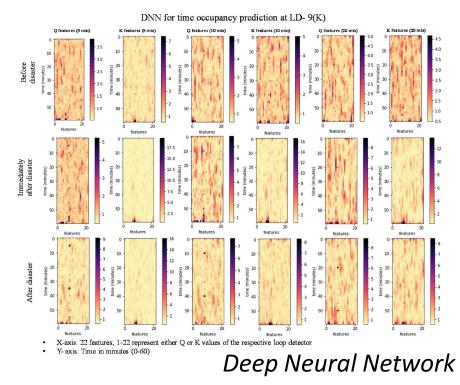
Photo by [Bergmann et al., 2019]



Ruff, Lukas, et al. "A Unifying Review of Deep and Shallow Anomaly Detection." arXiv preprint arXiv:2009.11732 (2020).

Machine learning for what?


Shafique & Hato (2015): Traffic mode detection


AV = Average acceleration in vertical direction (G)

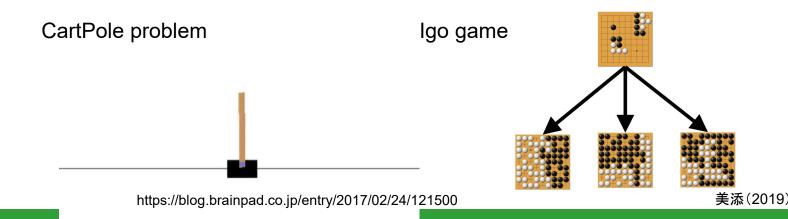
AC = Average acceleration in cross-wise direction (G)

Sueki, Hara, Sasaki et al. (2018):

Chikaraishi, Varghsee et al. (2020): Time Occupancy predition

Machine learning Types

Supervised learning


- To learn the true relationship between input and output from the training data.
- The training data consists of pairs of input data and corresponding output values.

Unsupervised learning

- To discover useful knowledge from the data
- Using only input data in the training process

Reinforcement learning

- To learn a set of actions that maximizes the cumulative reward over time.
- Rewards are given for taking specific actions.

Flowchart of Machine Learning

1. Identify the task

- You need to clarify what you want to know and the data you can potentially collect, and then identify the task and the model to be used.

2. Collect data

- Conduct your own surveys
- Collect data from open datasets or past surveys.

3. Analysis and Train

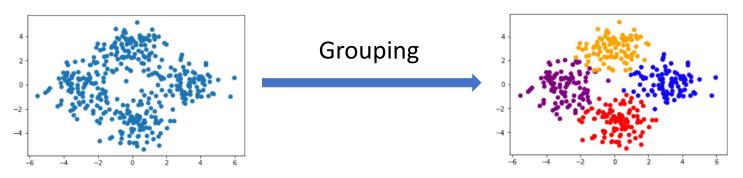
- Basic analysis and Preprocess
- Train machine learning model and evaluate

4. Explain and Summarize

- The results should be explained and organized
- To return to the corresponding stage if things do not go well

Outline

1.Introduction

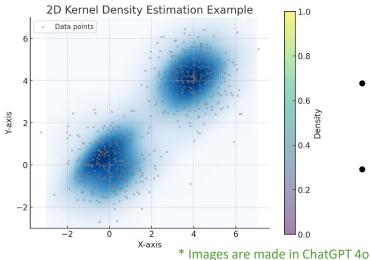

- 2.Un-supervised learning
- **3.Supervised learning**
 - 1. Data preparation
 - 2.Evaluation
 - **3.Estimation**
 - 4.Model
 - **1.Neural Network**
 - 2.Support Vector Machin

Un-supervised Learning

- Unsupervised learning aims to estimate the underlying structure or processes that generate the input data
- The input data consists of a collection of feature vectors

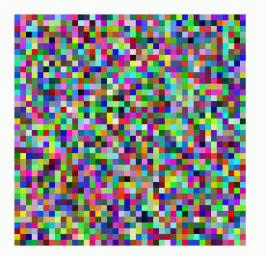
Ex.

Clustering is a method that groups data based on similarities



you can cluster

- people based on previous behaviors and personal attributes
- destination zones based on attributes of the facilities and people who stay.


Examples - Un-supervised Learning

Kernel Density Estimation (KDE)

- non-parametric method that estimates the probability density function based on data, without assuming a specific distribution
- KDE can be applied to anomaly detection or detecting rare phenomena.

Self-Organizing Maps (SOM)

- the nonlinear structure of high-dimensional data onto a 2D grid while preserving the relationships in the data
- Using neural networks, SOM projects data patterns and distributions onto a 2D grid

Outline

- 1.Introduction
- 2.Un-supervised learning
- **3.Supervised learning**
 - 1. Data preparation
 - 2.Evaluation
 - **3.Estimation**
 - 4.Model
 - **1.Neural Network**
 - 2.Support Vector Machine Classification

Purpose and Data

The goal is to build a model that can correctly predict y from **x** by learning from this input data.

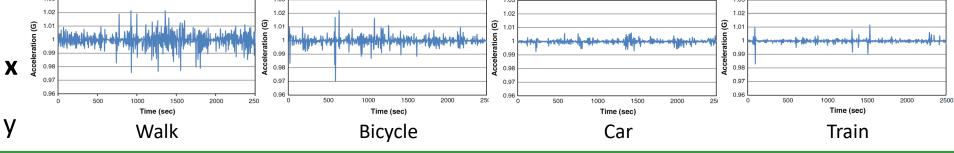
The data in supervised learning consists of the pair of

- x: features of the data
- y: target value.
- Ex. Image recognition

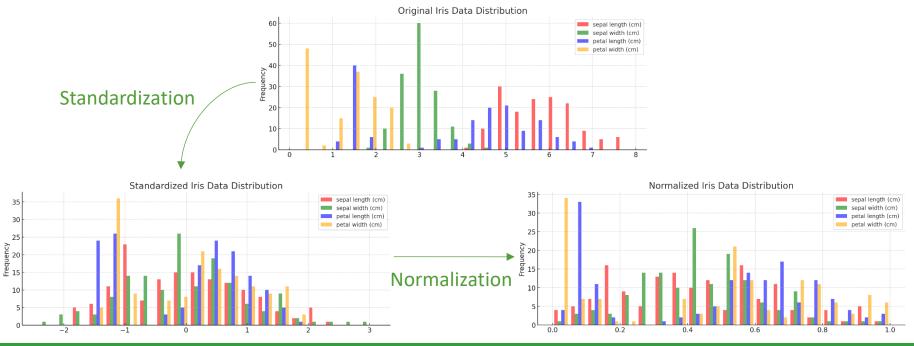
y Small vehicle

Χ

- Large vehicle
 - Large vehicle


Large vehicle

Small vehicle https://www.intelligentstyle.co.jp/product/aitraffic/


Ex. Traffic Mode detection

Shafique & Hato (2015)

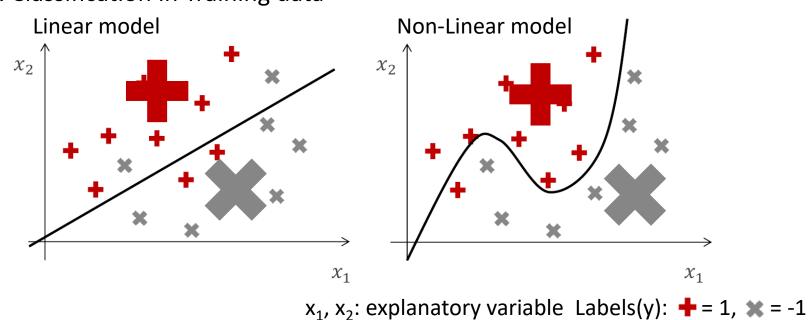
Data Preprocess

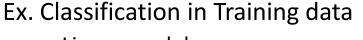
- The input data may contain both continuous data and categorical data
 - Categorical data need to be transformed by creating dummy variable
- Major Preprocessing
 - Standardization: mean of 0 & variance of 1
 - Normalization: range [0, 1] or [-1, 1]
- The purpose is to make the absolute values and distributions of the various variables more comparable. By doing this, the model estimation process proceeds more smoothly.

Model: Regression and Classification

- If the dependent variable y in the training data is continuous, a regression model is built.
- If y is discrete, a classification model is built.

Ex. Regression


- Sales forecast: y = Net sales of stores/day, x = Store square footage, type of business, weather, day of the week
- Bus demand: y = Number of passengers/h, x = Routes, temperatures, rain, school vacations, day of the week


Ex. Classification

- Diseased: y = diseased or not, x = Blood test, saliva test, temperature, facial expression, radiographs
- Traffic mode: y = mode, x = Travel time, fares, access & egress time, temperature, driver license, accompany person

Classification

- Predictions are made using a model that outputs continuous values f_w(x) based on the model's parameters w
- The parameter **w** are estimated via training the model

Objective function (Loss function)

The parameter estimation for the model evaluates how well the model fits the data

Loss function L(w)

= Distance between the model output $f_w(\mathbf{x})$ and the label y from the training data

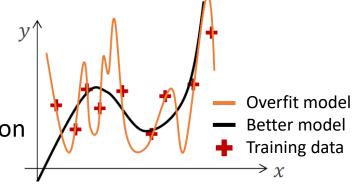
Finding parameter **w** by $\min_{\mathbf{w}} \sum_{i} L(\mathbf{w}, (x, y)_{i})$

Ex. Hinge loss Hinge Loss L = max(0, 1 - $y_i \hat{y}_i$) y_i : (observed)Label, \hat{y}_i : model output $y_i, \hat{y}_i = (-1, 1)$

Ex. Cross Entropy loss

Cross Entropy Loss L = $-[y_i \log(\hat{p}_i) + (1 - y_i)\log(1 - \hat{p}_i)]$

 \hat{p}_i : model output (probability) $\hat{p}_i \in (0, 1)$


Overfit and regularization

What is overfit?

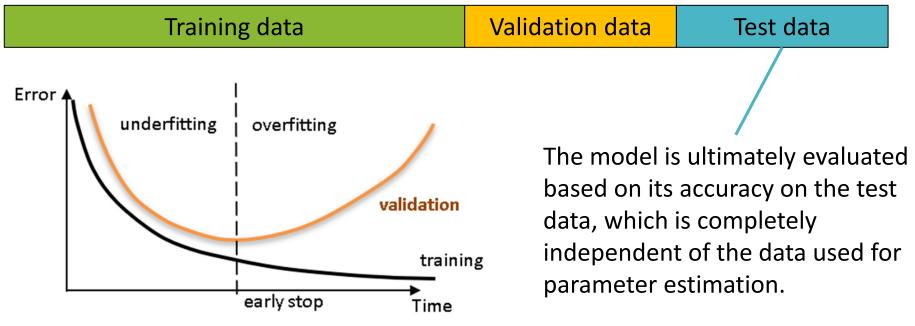
- Overfitting occurs when the model becomes overly complex and fits too well to the training data

- Overfitting makes the model ineffective for prediction

To reduce the complexity

Regularization?

- We add the regularization term on the objective function


- The term prevents an excessive number of parameters from taking on non-zero values, allowing the model to remain suitable for making accurate predictions.

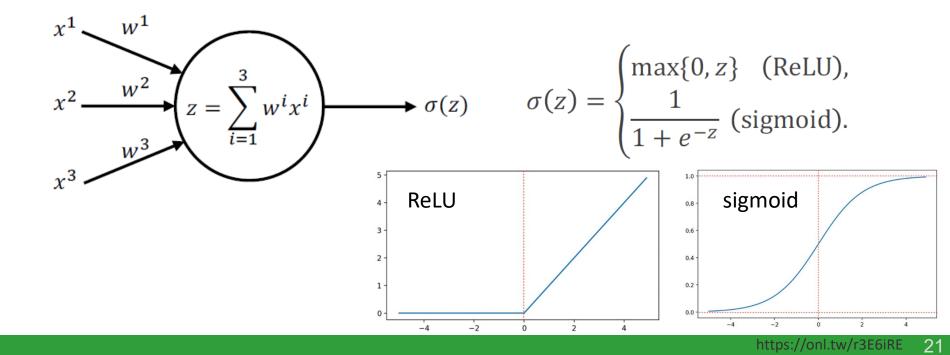
$$\min_{w} \sum_{i} L(w, (x, y)_{i}) + \lambda R(w)$$

L2 (Ridge regression): $R(w) = \sum_{j} w_{j}^{2}$
L1 (Lasso regression): $R(w) = \sum_{j} |w_{j}|$

Cross-Validation

Early Stopping

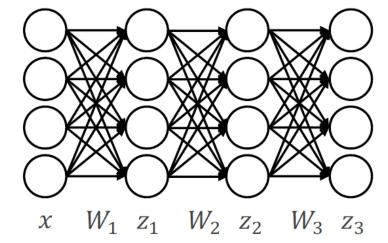
- 1. The data is split into training and validation sets during parameter estimation
- 2. The parameters are estimated using the training data
- 3. To calculate the loss function with the estimated parameters using the validation data
- 4. Iterate 2 & 3, and then the final model is selected based on the parameters that perform well on the validation data


Graph by Abambres, & Lantsoght, Eva. (2019). ANN-Based Fatigue Strength of Concrete under Compression. Materials. 12. 3787. 10.3390/ma12223787.

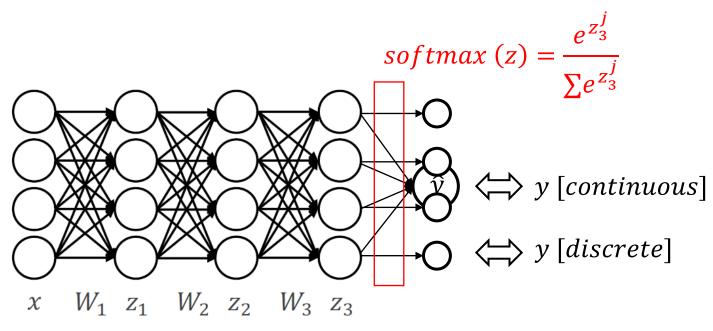
Outline

- 1.Introduction
- 2.Un-supervised learning
- **3.Supervised learning**
 - 1. Data preparation
 - 2.Evaluation
 - **3.Estimation**
 - 4.Model
 - **1.Neural Network**
 - 2.Support Vector Machine Classification

What is Neural Network?


- Neural networks are machine learning models inspired by the brain.
- Neurons (nodes) are connected through weighted edges, forming a network.
- Neurons receive signals z/x from other connected neurons according to the weights w on these edges, and then apply a transformation called an activation function σ to output a signal.
- Activation function ReLU function, sigmoid function etc

(Deep) Neural Network


- Neurons are stacked in parallel to form layers.
- By stacking multiple layers of neurons, a deep neural network (DNN) is created.
- By incorporating nonlinear activation functions such as ReLU and sigmoid, complex nonlinear transformations can be achieved.

$$x \to W_1 x \to \sigma_1(W_1 x) \to W_2 \sigma_1(W_1 x) \to \sigma_2(W_2 \sigma_1(W_1 x))$$

Last layer

- The final layer of a neural network is configured according to the task.
- For regression tasks, it is sufficient to apply a transformation that consolidates the output into a single node.
- In classification tasks, the softmax function is commonly used to calculate the probability of belonging to each class.

Why you can be DEEP?

 \rightarrow Applying Backward error propagation method

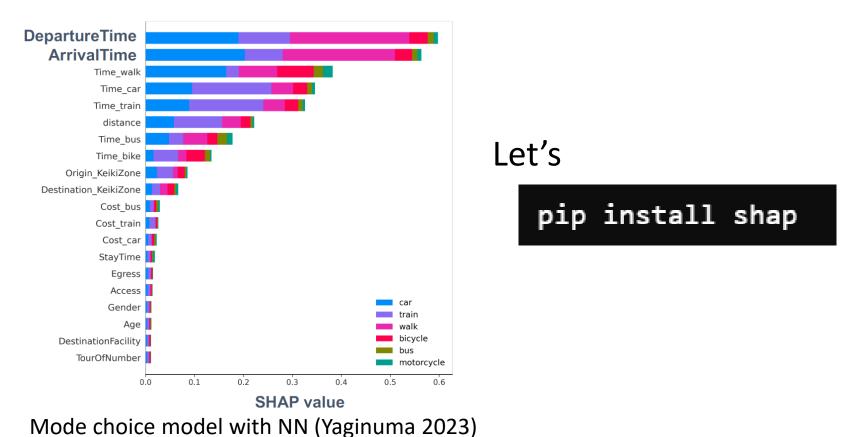
Objective function
Loss function
$$F(\mathbf{w}, b) = \prod_{i} P(k_i | \mathbf{x}_i) = \prod_{i} \hat{y}_i^{y_i} (1 - \hat{y}_i)^{1-y_i}$$

Log (loss function) $E(\mathbf{w}, b) = -\log F(\mathbf{w}, b) = -\sum_{n} \{y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)\}$

To minimize the loss function, parameters are updated in the direction of the gradient

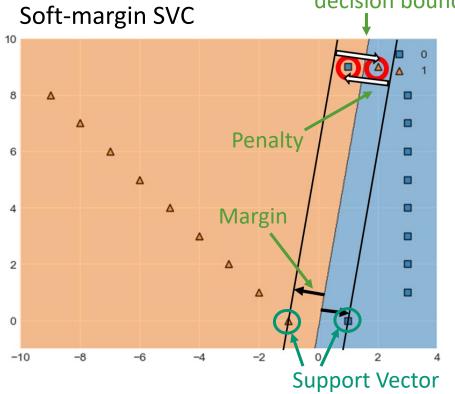
$$w^{t+1} = w^t - \eta \frac{\partial E(w, b)}{\partial w}$$
 $b^{t+1} = b^t - \eta \frac{\partial E(w, b)}{\partial b}_{\eta: \text{ learn}}$

 η : learning rate (hyper parameter)


The derivative calculation is quite simple, allowing for quick parameter updates

$$\frac{\partial E(\boldsymbol{w}, b)}{\partial \boldsymbol{w}} = \dots = -\sum_{n} (y_i - \hat{y}_i) \boldsymbol{x}_i \qquad \text{(In sigmoid function)}$$

In addition, we can use GPUs for parallel computing

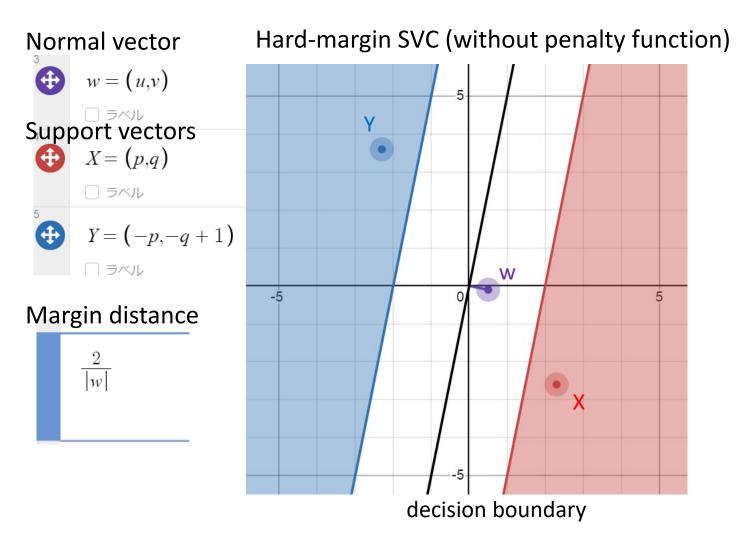

[Extra] SHAP (SHapley Additive exPlanations)

- SHAP is used to clarify how each feature contributes to the prediction results.
- It quantifies the impact of each feature on the prediction.
- SHAP makes it possible to interpret machine learning models, which often are regarded as black boxes.
- The values provided by SHAP are similar to elasticity in discrete choice models.

Support Vector Machine Classification (SVC)

- The decision boundary that classifies the data is learned under the rule of margin maximization.
- The goal is to find the decision boundary that maximizes the margin.
- However, in some cases, the data cannot be perfectly separated by the boundary.
- In such cases, an objective function is set to minimize a penalty term.

decision boundary


Inverse of margin

$$\begin{array}{l} \text{} \min_{w,b,\zeta} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^N \zeta_i \\ \text{Penalty} \\ \text{} y_i (w^T \cdot x_i + b) \geq 1 - \zeta_i \quad \forall i \end{array}$$

- w: Normal vector to the decision boundary
- **b**: bias term of the decision boundary
- N: Number of data
- **C**: Weight of parameter
- ζ_i : Penalty term (usually, apply Hinge function)

$$\zeta_i = f(1 - y_i(w^t x_i + b))$$

Demo: Support Vector Machine

There are many advanced model in ML/DL field. ex. CNN, RNN, Transformer, LLM, GAN Let's start to estimate the models, and predict!

Major References [JPN]: 東京大学数理・情報教育研究センターニ反田篤史2021 3-3 機械学習の基礎と展望 [Link] 3-4 深層学習の基礎と展望 [Link]