Modeling Mode Choice Sensitivities: Analyzing the Influence of Transport Attributes on Ridership Using Multinomial Logit Model

Muhammad Umer Karimi

Muntaha Shahzad

Sardar Muhammad Abubakar

Emaan Ishaq

University of Central Punjab

OBJECTIVES

- To Estimate Parameters using MNL Models based on Data Analysis.
- To Understand How Sensitive each Mode is to Changes in its Own Attributes.
- To Analyze How Changes in One Attribute of Public Transport Influence the Selection of Different Modes Based on Elasticities.

METHODOLOGY

Discussions

Policy Implication

DATA PREPROCESSING

MODE CHOICE ANALYSIS (SHIBUYA) Transportation Mode

Others		Т
Subway	8.23 %	
Bike	5.78 %	
Freight Car	0.28 %	
Taxi	0.26 %	
Motorcycle	0.13 %	
Tram	1.06 %	29.76%
Shared Bike	0.02 %	
Monorail	0.04 %	

MODE CHOICE ANALYSIS (OJIMA) Transportation Mode (Ojima)

Bike	24.66%
Bus	4.41%
Car	5.76%
Walk	40.66%
Train	24.44%
Other	0.07%
Une	0.0770

24.44%

0.07%

Bike Bus Car Walk Train Other

FEATURE ENGINEERING

COMPOSITE ATTRIBUTES AND NON-LINEAR INTERACTIONS

```
##### COMPOSITE ATTRIBUTES ####
data['Speed_Train'] = np.log(((data['Distance_Train']) / (data['Total_Time_Train']))+ 1)
data['Speed_Bus'] = np.log(((data['Distance_Bus']) / (data['Total_Time_Bus'])) + 1)
data['Speed_Car'] = np.log(((data['Distance_Car']) / (data['Time_Car'])) + 1)
data['Speed Walk'] = np.log(((data['Distance Walk']) / (data['Time Walk'])) + 1)
data['log_Time_Train'] = np.log(data['Total_Time_Train'] + 1)
data['log_Time_Bus'] = np.log(data['Total_Time_Bus'] + 1)
data['log_Time_Car'] = np.log(data['Time_Car'] + 1)
data['log_Time_Walk'] = np.log(data['Time_Walk'] + 1)
data['sqrt_Distance_Train'] = np.sqrt(data['Distance_Train'])
data['sqrt_Distance_Bus'] = np.sqrt(data['Distance_Bus'])
data['sqrt_Distance_Car'] = np.sqrt(data['Distance_Car'])
data['sqrt_Distance_Walk'] = np.sqrt(data['Distance_Walk'])
data['sqrt_Fare_Train'] = np.sqrt(data['Fare_Train'])
data['sqrt_Fare_Bus'] = np.sqrt(data['Fare_Bus'])
```

➤The speed attributes provide a better reflection of the efficiency of each mode by accounting for both distance and time in a non-linear way, enhancing the model's explanatory power.

The log transformation addresses how small changes in lower values have a larger impact on choice.

➤The square root transformation captures a more balanced relationship between distance and fare, mitigating the influence of extreme values.

DATA ANALYSIS USING MULTINOMIAL LOGIT MODEL AND RANDOM FOREST ALGORITHM

DATA ANALYSIS USING MNL

SHIBUYA TRIP DATA			OJIMA TRIP DATA						
Attributes	Model (MNL-4a/Base)	Model (MNL-4c)	Model (MNL-4d)	Model (MNL-4e)	Attributes	Model (MNL-la/Base)	Model (MNL-1c)	Model (MNL-1d)	Model (MNL-1e)
	Restri	ctions (d)				Restri	ctions (d)		
Total Time	-1 1682	-0 9191		_	Total Time	-1 5979	-0.5108		_
Distance	-	-0.9420	-	_	Distance	-	-1.7302	_	_
Fare	2.0029	1.9862	_	-	Fare	2.2262	2.1213	-	-
No. of Change Transportation	-0.4823	-0.4397	-0.3196	-0.3309	No. of Change Transportation	-1.1015	-0.8570	-0.5911	-0.607196
Modified Restrictions (d)				Modified Restrictions (d)					
Log-Time	-	-	-2.7231	-2.0464	Log-Time	-	-	-1.5421	-2.0314
Sqrt-Distance	-	-	1.0258	-	Sqrt-Distance	-	-	-0.5855	-
Sqrt-Fare	-	-	1.9057	1.8987	Sqrt-Fare	_	-	1.9624	1.9332
Speed	-	-	0.0622	0.1063	Speed	-	-	0.1358	0.0965
					_				
	Mode Co	nstants (b)				Mode Co	nstants (b)		
Train	0.7290	0.7267	0.8319	0.7844	Train	-0.6211	-0.6710	-0.7048	-0.6885
Bus	-3.5324	-3.4516	-3.6336	-3.4797	Bus	-2.3794	-2.3103	-2.4562	-2.4867
Car	-1.2506	-1.2499	-1.1599	-1.1546	Car	-1.9604	-1.9541	-1.8997	-1.9002
Walk	0.0000	0.0000	0.0000	0.0000	Walk	0	0	0	0
LL @ 0	-5388.5262	-5388.5262	-5388.5262	-5388.5262	LL @ 0	-1395.9984	-1395.9984	-1395.9984	-1395.9984
LL @ Convergence	-3245.5084	-3230.7784	-2993.2398	-3007.4999	LL @ Convergence	-850.5520	-828.6218	-788.4334	-790.0754
rho-squared	0.3977	0.4004	0.4445	0.4419	rho-squared	0.3907	0.4064	0.4352	0.4340
Adjusted rho-squared	0.3964	0.3989	0.4428	0.4404	Adjusted rho-squared	0.3857	0.4007	0.4288	0.4283

Random Forest Algo	rithm Model (Shibuya)	Random Forest Algorithm Model (Ojima)			
Attributes/Parameters us	sed for Training (Y = Used)	Attributes/Parameters used for Training (Y = Used)			
Total Time	Y	Total Time	Y		
Distance	Y	Distance	Y		
Fare	Y	Fare	Y		
No. of Change Transportation	Y	No. of Change Transportation	Y		
Purpose	_	Purpose	-		
Access Time	Y	Access Time	Y		
Egress Time	Y	Egress Time	Y		
Access Distance	Y	Access Distance	Y		
Egress Distance	Y	Egress Distance	Y		
Availabilt	y of Modes	Availabilt	ty of Modes		
Train	Y	Train	Y		
Bus	Y	Bus	Y		
Car	Y	Car	Y		
Walk	Y	Walk	Y		
RF Mod	el Details	RF Mod	RF Model Details		
T_T Split	70 / 30	T_T Split	65 / 35		
Random state	25	Random state	25		
No. of Trees	99	No. of Trees	109		
Sampling Method	Random Over Sampler	Sampling Method	Random Over Sampler		
Max. Depth of Trees	25	Max. Depth of Trees	25		
Training	Accuracies	Training Accuracies			
Accuracy	0.99988	Accuracy	1.0		
Precision	0.99988	Precision	1.0		
F1_Score	0.99988	F1 Score	1.0		
Testing A	Accuracies	Testing Accuracies			
Accuracy	0.96681	Accuracy	0.951		
Precision	0.74643	Precision	0.610		
F1_Score	0.68644	F1 Score	0.603		

MODEL ANALYSIS RESULTS

SHIBUYA MNL MODEL 4d: FINAL RESULTS

	MNL Model 4d (Shibuya)						
	Results						
		Estimated Parameters	T -statistics				
b1	Train	0.832	0.008				
b2	Bus	-3.634	-0.272				
b3	Car	-1.160	-0.051				
d1	Log Time	-2.723	-0.136				
d2	Sqrt Distance	1.026	0.114				
d3	Sqrt Fare	1.906	0.083				
d4	No. of Change of Transportation Modes	-0.320	-0.009				
d5	Speed	0.062	0.001				
b4	Walk	0	0				

MNL Model 4d (Shibuya)				
Current Function Value	2993.240			
terations	30			
Function Evaluations	390			
Gradient Evaluations	39			
LL(0)	-5388.526			
LL	-2993.240			
Rho-Squared	0.4445			
Adjusted Rho-Squared	0.4428			

OJIMA MNL MODEL 1d: FINAL RESULTS

MNL Model 1d (Ojima)							
	Results						
		Estimated Parameters	T -statistics				
b1	Train	-0.705	-0.057				
b2	Bus	-2.456	-0.335				
b3	Car	-1.900	-0.224				
d1	Log Time	-1.542	-0.207				
d2	Sqrt Distance	-0.585	-0.080				
d3	Sqrt Fare	1.962	0.147				
d4	No. of Change of Transportation Modes	-0.591	-0.039				
d5	Speed	0.136	0.007				
b4	Walk	0	0				

MNL Model 1d (Ojima)				
Current Function Value	788.433			
Iterations	19			
Function Evaluations	240			
Gradient Evaluations	24			
LL(0)	-1395.998			
LL	-788.433			
Rho-Squared	0.4352			
Adjusted Rho-Squared	0.4288			

DISCUSSIONS

DISCUSSIONS (SHIBUYA)

- > The MNL model appears to fit the data well, as indicated by the rho-square and
 - adjusted rho-square (0.44) values, both of which suggest the model captures a
 - substantial proportion of the variability in choices.

Many T-statistics are significant, suggesting that the model fit is good overall, and some individual parameters strongly influence the choice behavior

DISCUSSIONS (OJIMA)

 \succ The **Rho-square** value, which is 0.4288, indicates that the model explains about

42.88% of the variation in the data. This is a decent fit for MNL model, as values

between 0.2 and 0.4 are typically considered reasonable for choice models.

Many of the T-statistic values suggests high significance, that the coefficients for most variables have a strong or reliable effect on the choice outcome in the model.

POLICY IMPLICATIONS

SHIBUYA MNL MODEL 4d

Sensitivity of the Modes to their own attributes

➤A 1% increase in attributes results in mentioned %age decrease in the likelihood of choosing the train, bus or car, Indicating negative relationship.

			Direct E	lastic
0.0000	-0.4997	-0.4308	-0.4428	
-0.5000				
-1.0000				
-1.5000				
-2.0000				-3.74
-2.5000				
-3.0000				
-3.5000				
-4.0000				
	Train Total Time	Train Distance	Train Fare	Bus Tot Time
				Train 📕

Time

Distance

n 📒 Bus 🔳 Car

Distance

OJIMA MNL MODEL 1d

Sensitivity of the Modes to their own attributes

➤A 1% increase in attributes results in mentioned %age decrease in the likelihood of choosing the train, bus or car, Indicating negative relationship.

MNL MODELS

Analysis of How Changes in One Attribute Influence the Selection of Different Modes - Train

MNL MODELS

Analysis of How Changes in One Attribute Influence the Selection of Different Modes - Bus

POLICY IMPLICATION OF MNL MODELS

Analysis of How Changes in One Attribute Influence the Selection of Different Modes

Policy Simulation using Elasticities:

 \blacktriangleright If we decrease the Train Fare by 20%, the likelihood of increase in ridership will be: \blacktriangleright For Shibuya: 8.856% ≻ For Ojima: 23.06 %

 \triangleright Conversely by decreasing Train Fare by 20%, the likelihood for decrease in ridership of: ▶ Bus: 0.972 % Shibuya, 5.98 % Ojima ≻ Car: 1.718 % Shibuya, 2.24 % Ojima ➢ Walk: 6.164 Shibuya, 14.86 % Ojima

