Behavior Modelling Summer School 11 – 13, September 2024, University of Tokyo

Changes in Travel Behavior in the Covid-19 Pandemic Period in Toyosu City

Pham Van Son Xavier Blessy David Reza Abdullah 一ノ瀬翔輝

1. Introduction

Toyosu City

- Toyosu city 's location near central Tokyo makes it valuable for real estate development and Tourism.
- Toyosu Market (Toyosu Shijō): A major wholesale market for seafood, fruits, and vegetables, replacing the historic Tsukiji Market.
- The COVID-19 pandemic has posed significant challenges to development and led to notable changes in people's behavior.

Objectives

To analyse the choices where individuals allocate their time across multiple activities (*e.g., work, school, shopping, stay at home, leisure, tourism*) before and after the COVID-19 pandemic.

Dataset

- PP Data (2018 2021)
- PT data
- From Purpose of Trip
- Departure and Arrival Time
- Trip Duration
- Age, Sex, income, etc

Across all age categories: Before Covid-19 to During Covid-19

- Home activity has increased;
- □ Commuting to Work Place/School activity has **decreased.**

*Extra activity: Leisure, Shopping, Tourism, etc

3.Basic Data Analysis

Across all Gender categories: Before Covid-19 to During Covid-19

Home activity has **increased**;

Commuting to Work Place/School activity has decreased.

*Extra activity: Leisure, Shopping, Tourism, etc

HIROSHIMA UNIVERSITY

4.1 Modelling Approach

• To explore travel behavior characteristics before and after Covid-19 Pandemic

4.1 Modelling Approach

To explore travel behavior characteristics before and after Covid-19 Pandemic where individuals allocate their time across multiple activities with each activity

Variable	Description
Idividual ID	Respondent ID
date	Index of weekday and weekend
Buget [minutes]	Total amount of time register during the day
t_01	Time spent for commuting
t_02	Time spent for bussiness
t_03	Time spent for shopping
t_04	Time spent for others
t_n	etc

4.2 Model Estimation

 Multiple Discrete-Continuous Extreme Value (MDCEV) model is used to model choices where individuals allocate their time across multiple activities, with each activity potentially receiving a different amount of time.

MDCEV Utility Function:

The total utility U for an individual n choosing to allocate time across J activities is given by:

$$U_n = \sum_{j=1}^J rac{lpha_j}{\gamma_j} \left(1-e^{-\gamma_j x_{nj}}
ight) + \sum_{j=1}^J \delta_j Z_{nj}$$

Budget Constraint:

The total time an individual can allocate is constrained by their available time budget, typically 24 hours:

$$\sum_{j=1}^{J} t_{nj} \le 24 \text{ hours}$$

4.2 Modelling Approach

Where:

- x_{nj} : the time spend for activity j by individual n.
- *α_j*: the marginal utility of activity j.
- γ_j: a satiation parameter for activity j (i.e., a parameter that controls diminishing returns as more time is spent on activity j).
- δ_j: the base utility of activity j, including the influence of socio-demographic factors.
- Z_{nj}: represents socio-demographic variables such as age, post-COVID (post), income level, etc.
- The first term represents the continuous consumption of time, while the second term captures the baseline utility of choosing activity j.

5. Results

Pre Covid-19 Pandemic vs During Covid-19 Pandemic

	Pre-Pandemic			During-Pandemic	
	Estimate ra	t.(0) Rob		Estimate rat.(0) Rob	
alpha_base	-15.354	-0.219		-15.026 -0.275	
gamma_work	2.341	14.89	***	3.397 16.157	***
gamma_school	3.251	20.717	***	3.475 25.087	***
gamma_shopping	3.079	14.012	***	4.43 20.113	***
gamma_private	2.496	8.018	***	2.232 12.763	***
gamma_leisure	4.719	12.23	***	7.377 17.308	***
delta_work	-3.569	-68.066	***	-3.788 -55.697	***
delta_shopping	-2.975	-109.783	***	-2.381 -133.81	***
delta_private	-5.12	-69.901	***	-4.473 -93.717	***
delta_leisure	-3.621	-78.225	***	-3.082 -124.621	***
delta_work_FT	0.003	0.108		0.03 1.133	
delta_work_wknd	-0.698	-5.313	***	-0.623 -5.895	***
delta_leisure_wknd	0.945	13.896	***	0.449 11.956	***
theta_optional	0.664	34.037	***	0.556 48.027	***
LL(start)	-23696.39			-38807.54	
LL(final)	-18195.01			-30738.04	
AIC	36422.02			61508.09	
BIC	36515.86			61608.61	1

1. Remote Work and Flexible Schedules:

OPre-Pandemic: Work-related activities were more robust, indicating a higher participation in commuting.

oDuring-Pandemic: Decline in work-related activity.

ORecommendation: Encourage **remote work** and **flexible work schedules**. This would reduce commuting times, improve work-life balance.

2.Support for E-commerce and Local Retail:

OPre-Pandemic: High participation in in-person shopping trips.

ODuring-Pandemic: Significant reduction in physical shopping

ORecommendation: Provide **support for digital transformation** and incentivize **local shopping** through e-commerce platforms.

3. Promotion of Safe Leisure Activities:

OPre-Pandemic: High engagement in leisure activities, particularly on weekends. **ODuring-Pandemic**: Leisure activities declined, with a focus on weekends for flexibility. **ORecommendation**: Invest in **outdoor leisure spaces** and **weekend recreation**

4. Sustainable Transport and Mobility Solutions:

OPre-Pandemic: Frequent use of public transport and commuting for work and shopping.

ODuring-Pandemic: Decline in transport use.

ORecommendation: Promote **alternative transport modes** such as cycling and wan

HIROSHIMA UNIVERSITY

Thank you very much!

