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Abstract

Research focus: One-to-one matching model with transferable utility and general
unobserved heterogeneity

Method: Extended the separability assumption from Choo and Siow (2006)

Results:

 Shows that equilibrium matching maximize a social gain function, balancing
complementarities in observable characteristics and matching on unobserved traits

 Derives simple closed-form formulas to identify joint matching surplus and equilibrium
utilities for all participants, given any known distribution of unobserved heterogeneity

Contributions:

 Provides efficient algorithms for computing stable matching and estimating parametric
models

 Revisits Choo and Siow's empirical application, demonstrating the potential of a more
general approach
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Novelty, Utility, Reliability

Novelty:

» Extends Choo and Siow's (2006) separability assumption to a more general
framework

Utility:
* Provides practical solutions for identifying matching surplus and utilities.

» Offers efficient algorithms for stable matching and parametric model
estimation.

Reliability:

» Conducts empirical approach
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1. Introduction
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Models of matching with transferable utilities

* Model the marriage problem as a matching problem (Becker, 1973)

» "Assignment game” (Shapley and Shubik, 1972)

* Models of matching with transferable utilities

* Applications of the model
« Competitive equilibrium in good markets with hedonic pricing
 Trade

* The labor market
* Industrial organization
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Becker's theory and its problem

Becker’s theory:

 The type of the partners are one-dimensional and complementary in
producing surplus (Special case)

» Social optimum shows positive assortative matching:
* higher types pair up with higher types

The data:
* Matches are observed between partners with quite different

characteristics
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Choo and Siow’'s model

 Solution for Becker’s problem:
* Allow the matching surplus to incorporate latent characteristics — heterogeneity

Choo and Siow’s model

* Conditions:

* The unobserved heterogeneities enter the marital surplus quasi-additively

» These heterogeneities are independent and identically distributed as standard type |
extreme value terms

« Examples:

» Evaluate the effect of the legalization of abortion on gains to marriage
« Use Canadian data to measure the impact of demographic changes

 The idea has been used in various later studies
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Choo and Siow’'s model

3 assumptions of their model:

1. The unobserved heterogeneities on the two side of a match do not
Interact in producing matching surplus (Separability assumption)

2. They are distributed as iid type | extreme values (Distributional
assumption)

3. Populations are large
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Contributions of the paper

1. Extended idea of Choo and Siow’s model

« Choo and Siow’s distributional assumption is very special
* Generate a MNL model
 Specific restrictions on cross-elasticities

* The authors show:
» Choo and Siow’s distributional assumption can be completely dispensed with

 Choo-Siow framework can be extended to encompass much less restrictive assumptions on
the unobserved heterogeneity

2. Complete empirical approach

 |dentification
* Parametric estimation
* computation

3. Reuvisit the original Choo and Siow (2006) dataset on marriage
patterns by age
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Other approaches

 Market with transferable utilities

« Fox (2010, 2018)
* Bajari and Fox (2013) — spectrum auctions
» Fox et al. (2018) — identify the complementarity between unobserved characteristics

 Gualdani and Sinha (2019) — partial identification issues in nonparametric matching
models

 Market with non-transferable utilities

* Menzel (2015) — investigation of large non-transferable utilities markets

 School assignment, where preferences on one side of the market are highly
constrained by regulation

« Agarwal (2015) — matching in the US medical resident program
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2. Framework and Roadmap
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A bipartite matching market with transferable utility

* A bipartite, one-to-one matching market with transferable utility

« Maintains some of the basic assumptions of Choo and Siow (2006)

« Utility transfers between partners are unconstrained
« Matching is frictionless
* No asymmetric information among potential partners

» An application to the heterosexual marriage market
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Setting

J Set of men 1 €J

J Set of women jEeJ

X Set of groups of men x€eX

Y Set of groups of women yeETY

Ny Mass of men in group x DNy + 2yMmy =1,
m,  Mass of women in group y r=(nm)

* The analyst can observe groups are defined by the intersection of the
characteristics

* The analyst cannot observe men and women of a given group differ
along some dimensions
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Setting 2

Uxy Mass of the couples where the man belongs to group ueE M)
x, and where the woman belongs to group y
M Set of u Mr)={u=0:YxeX

rZﬂxySnx;vyey

YEY

Kxo Mass of single men of group x o = Ny — Z Uy

y€Y
M f singl f

Koy ass of single women of group y Hoy =M, — Z ey
XEX

Xo Set of marital choices available to male agents Xo =X U {0}

Yo Set of marital choices available to female agents Yo =Y U {0}

A Set of marital arrangement A = (XXY) U (Xx{0}H U {0}xT)
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Separabllity

Assumption 1 (Separability)

- Joint utility of a match: &;; = &, + ¢;, + 1,;
. 5131-]-: Joint utility for man i (group x) and woman j (group y)
* @,,: Base utility between group x and y
* &;: Random term specific to man i
* 17y;: Random term specific to woman j

« Utility of single individuals:
« Single man i: ®;, = ¢,

» Single woman j: ®¢; = 1,

 Distribution and finite expectations:

+ Conditional on x; = x, & = (&;y)yey, has distribution P,
 Conditional on y; = y,m; = (Nxj)xex, has distribution Q,,

°© Mmaxyey,|&y| and maxyex, |n,;| have finite expectations under

P, and Q,, respectively

2024/5/20 IR EE = 2024#7

Allow for “matching on unobservables’

1

Rule out sorting on unobserved

characteristics on both sides of the
market

E.g. some unobserved preference

of man i for some unobserved
characteristics of woman j

P, and Q,, are not only limited
to the extreme value class
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2.3 Objectives and a roadmap

Final goal
Develop inference tools for matching problems with transferable utility and

separable unobserved heterogeneity

Steps

1. Two-sided matching problem resolves into a collection of one-sided problems of lower
complexity (given separability)

Provide new results on discrete choice (one-sided) models
Stable matching solves a convex optimization problem

Use convex duality to identify the matching surplus

ok W

New computational methods to solve for the stable matching and to estimate
underlying parameters

2024/5/20 IR IR EE 202447 16



3. Social Surplus and Identification in the
One-Side Case;
Discrete Choice Models

2024/5/20 IR EE = 2024#7
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Splitting the surplus

Proposition 1: Splitting the surplus

- Under Assumption 1, there exist U = (U, ) and V = (V) for (x,¥) € A, with Uy, =V, = 0,
such that at any stable matching ()

1. Men’s matching decision:
* A man i of group x marries a woman of group y* € Y if y* maximizes Uy, + &;;, over y € Y

* If the maximum is achieved at y = 0, the man remains single
* Man i's utility @; is the value of the maximum

2. Women’'s matching decision:
- A woman j of group y marries a woman of group x* € X if x™ maximizes Vy,, + 1,; over x € X

* If the maximum is achieved at x = 0, the woman remains single
« Woman j's utility 7 is the value of the maximum

3. Surplus splitting condition:
© Uyy + Vi = Dy, forall (x,y) € A, with equality if py, > 0
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Social surplus in discrete choice models

One-sided discrete choice problems

* An individual chooses from a set of alternatives y € Y,
- Utilities are U, + ¢,,
* Assume the vector € = (&), ey, has a distribution P; without loss of generality
* Up=0, U= (Uy,..,Uy)

The ex ante indirect surplus
= weighted sum of the mean utilities + generalized entropy of choice

Two characterizations of generalized entropy function
1. The convex conjugate of the ex ante indirect utility
2. The solution to an optimal transport problem (Galichon, 2016)
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Generalized entropy of choice

The average utility of the agent
G(U) = Epmaxyey, (Uy + sy) (3.1)

= ]EP(UYL* - gi,Yi*) Yl*

= 2yeyby Uy + Ep(giyy)  (3.2)

The expectation is taken over the random
vector € = (&, &y|)~P

The function G is known as the Emax
operator in the discrete choice literature

€ Y, is the optimal choice of individual i

1y, is the proportion of individuals who choose
alternative y

Legendre-Fenchel transform of G
p= (1, piy)

G* (I,l) = SupU (Ul U|y|)(zyeyﬂy G(U)) whenever Zye‘y:uy
+oo0 , otherwise

 The domain of G* is the
set of u that can be

interpreted as vectors of
(3.3) choice probabilities of
alternatives in Y

1

2024/5/20 IR EE = 2024#7

e G*isaconvex function
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Generalized entropy of choice

Definition 1.

The function —G* is the generalized entropy of choice

G(U) = Supﬁ=(ﬁ1’---ﬁ|y|)(23’€y i, U, — G*(@)) (3.4) The theory of convex duality implies that since
G is convey, it is reciprocally the Legendre-
Fenchel transform of G*

GWU) +G*(n) = Z .quy

yeY Assume that u attains the supremum in (3.4)

G*(n) = —Ep (giYi*)

e —(G"isjustthe average heterogeneity that is required to rationalize the
conditional choice probability vector u
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Characterization of the generalized entropy of choice

Theorem 1 (Characterization of the generalized entropy of choice)
Statement:

Let i = (1, ..., Hyy)) With Xy ey iy < 1, and define py = 1 — ey 1y, Let M (p, P) denote the set of probability distributions
 of the random joint vector (¥, €), where Y~(u,, ) is a random element of Y,, and e~P is a random vector of RIYol,

Optimal transport interpretation:
—G*(n) = SUPrem (up) En (&y) (3.6)
» u: Vector of choice probabilities for alternatives in Y.
» 1 Joint distribution of (Y, &) with Y~(u,, w) and €~P.
« M (u, P): Set of feasible joint distributions.
* gy: Surplus given by the chosen Y
Explanation:

—G* () represents the value of the optimal transport problem between the distribution (i, ) of ¥ and the
distribution of P of & where the objective is to maximize the expected surplus E, (ey).
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ldentification of discrete choice models

Theorem 2 (Identifying the mean utilities)

Given:
= (g, s gy With Yo ey py, < 1
Up=0and U = (Uy, ..., Ujy))
Distribution P with full support, absolutely continuous w.r.t. the Lebesgue measure

Equivalent statements:
1. Foreveryy € Y, u, = ;TG(U) (3.7)
aG*
2. Foreveryy € Y, U, = ﬁ(") (3.8)
y

3. There exists a scalar function u(¢), integrable w.rt. P, such that (u, U) are the unique minimizers of the
dual problem to (3.6):

_G*(”) = minU'ufﬁ(S)dP(S) - Z ,U-yuy
_ Y€y _
s.t. u(e) — U, =¢,VyeY, Ve e RY, U, = 0.

* These conditions provide a way to uniquely identify mean utilities U
from observed choice probabilities u under the given distribution P

SASKE

2024/5/20 IR EE = 2024#7

Daly-Zachary-Williams theorem

Fenchel duality theorem:
(3.7) and (3.8) are equivalent

* 1 is well-known in the discrete
choice literature
« 2 and 3 provide a constructive
method to identify U,, based on
the conditional choice
probabilities u
* As the solution to a convex
optimization problem (2)
* An optimal transport
problem (3)
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Examples

1. Logit and nested Logit
« Two-layer nested logit model
» Alternative O is alone in a nest
* each other nest n € V' contains alternatives y € Y(n)
 Correlation of alternatives within nest n is 1 — A2 (1, = 1 for the nest made of alternative 0)
« Multinomial logit model (MNL)
* When 4, =1 for every nest n

2. Random coefficients multinomial logit and pure characteristics model

« Random coefficient logit model

 Error term ¢:
e=Ze+Tn

e is a random vector on R with distribution P,
o Zis a |Yy|xd matrix
* T > 0is ascalar parameter
* |Y| extreme value type-l (Gumbel) random variables, independent of e
* Pure characteristics model
* WhenT =0
+ Solution to the power diagram problem (Galichon, 2016)

SASKE
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4. Social Surplus and ldentification in the
Two-Side Case:
Matching Models



Matching models

» Define G, to be corresponding Emax function, based on the results of one-sided discrete choice

Primary problem Dual problem

Men's welfare
Gx(Uy) = Ep maxyecy,(Uxy + €iy) Gx(V) = maxycpy 2 v, U, — G, (U)
yeY
Aggregate welfare G*(pn)
(Given group G(Um) = ) 1yGy(U) _ Y )
numbers n = (n,)) — = Supyepaxy( HxyUyxy — G(U,Mm))
x€X,yEY

m— G (,N)= Yy nxG;;(Z—z) = — generalized entropy of choice of all men

* Define Hy(Vy) as the Emax function on women'’s side
- Given group numbers m = (m,, ), the aggregate welfare of women is H(V, m)
» Dual problems of these are the generalized entropy of choice
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Social surplus, equilibrium, and entropy of matching

e Social Surplus W:

W = GU,n) + HV, m) = 2 Gy (U + Z myHy, (V)
XEX yeEY

« Stable matching u = (uxy)xexyey (U +V = @)

* GMU,n) = Yyexyey bayUxy — G (M)  (3.4)
* HV,m) = erx,yey .uxnyy — H*(u, m) v (3.4)

* W= erx,yey Uxy Py + e(p,n, M)

* e(un,m) = -G (un) - H (p,m)
 Generalized entropy of matching
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Social surplus at equilibrium

Assumption 2
Forall x € X and y € Y, the distribution P, and @,, have full support and are absolutely continuous

Theorem 3 (Social surplus at equilibrium)

* Under assumptions 1 and 2, for any @ and r = (n, m) the stable matching g maximizes
the social surplus over all feasible matchings u € M (r)

W(P, r) = max,cprxy Qxex,yey by Pry + (1)) (4.5)
* Dual expression
W(@, r) = miny yeprexy(G(U,n) + HV, m)) (4.6)
St Uyy +Viy 2Py VX X,y ETY

« Optimal solutions relationship

0H

0G
Hxy = OUsy (U,n) =

(V,m) (4.7)
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Remarks of Theorem 3

4.

The components of social surplus and their meanings (4.5)
* The first term reflects “systematic preferences”

« If it dominates, it is the linear programming problem of Shapley and Shubik (1972)
« The second term reflects “idiosyncratic preferences”

« If it dominates (® = 0), it looks like random matching

Dual problem (4.6)
* The dual problem (4.6): The destination of the surplus shared at equilibrium between men and women
* n,G,(U,): the total amount of utility going to men of group x

- m,H,(V,): the total amount of utility going to women of group y

* The primary problem (4.7): The origin of surplus
«  ®@,,: The part of the surplus that comes from the interaction between observable characteristics in pair xy

* &(u,r): unobservable heterogeneities in tastes

The first-order conditions and the equality between the demand (4.7)

* (4.7) is the first-order conditions of (4.6)

* The right-hand side is the demand of women of group y for men of group x and vice versa
* In equilibrium, these numbers must both equal y,,,

2024/5/20 IR EE = 2024#7
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Individual and group surplus

Proposition 2 (Individual and group surplus)

Let (U, V) solve (4.6), and U, = Vy,, = 0. Under Assumptions 1 and 2,

* A man i of group x who marries a woman of group y* obtains utility

U xy* T Ejyr = maxyEyO(ny + eiy)

 The average utility of men of group x is

ow
Uy = Gx(Ux) — W (¢: 1')
X

* These can also be applied to women'’s side
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ldentification

 Focus on the case when the distributions of the error terms are khown

Theorem 4.
Under Assumptions 1 and 2:

1. U andV are identified from u by
G OH*

U= andV=—-(u)
2. Uyy +Vy = ®,y forevery x € X and y € Y. The matching surplus @ is identified by
2
Pry = = 5,— @1, 4.9)
G OH3
Pry = 5= (e) + 50 (1)y),

where Hxy = Hy|xNx = HUx|yMy

« Combining Theorem 2 and 4 shows that all of the quantities in Theorem 3 can be computed by
solving simple convex optimization problems

2024/5/20 IR EE = 2024#7
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Example 4.1 (The Choo and Siow specification)

+ Assume that P, and @, are the distributions of centred i.i.d standard type | extreme value random variables
* Generalized entropy:
€=- erx,yeyo Hxy log Hy|x — Zyey,xexo Hxy log Hx|y

* Averaged utilities with matching patterns:
Uy = _logu0|x: Uy = _log#0|y

 Surplus with matching patterns:
D,y = 2 10g tyy —log pixo — log poy

o
Uxy = w/ﬂxo.uOyeXp(%)

 Define:
q)xy—ux—vy

Fuv; ®,1) = Lyex ey + €7 = 1) + Byeymy(vy + 7 — 1) + 2 ¥ 1ex yey Jramye 2

« Sum of exponentials and of linear functions

* Globally strictly convex function of (u, v)

* Social welfare W(@®; r) equals F's minimum value and at the minimum,
o = Ny exp(—uy)
Hoy = my exp(—v,)
Uy — V

_ q)xy B y
:uxy - ,/nxmyexp( 2 )
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5. Computation

2024/5/20

IR EE = 2024#7
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Min-Emax method (based on gradient descent)

Two expressions for the social surplus (Theorem 3)

* (4.5) solves for the matching patterns u:
The globally concave unconstrained maximization problem (4.5)

* (4.6) solves for the U and V utility components:
The globally convex unconstrained minimization problem (dual)
minggxy(G(U,n) + H(® — U, m)) (5.1)

Min-Emax method based on (5.1)
* (5.1) has dimension |X'|x|Y|, unconstrained, very sparse structure

» The Hessian of the objective function contains many zeroes — easy
* Closed form — only require evaluating the G, and H,,

* Not closed form — use simulation and linear programming

(5.1) is globally convex — a descent algorithm converges nicely under weak conditions

In the Choo and Siow specification, the sparse structure of the problem can be used very

easily to reduce the dimensionality
* Only |X| + |Y| arguments
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Iterative projection fitting procedure (IPFP)

* In some cases, the number of groups | X| and |Y| is too large and min-Emax method is not practical option
— Extended the IPFP, if the generalized entropy ¢ is easy to evaluate

IPFP

- The average utilities (u,) and (v,)) of the groups of men and women play the role of prices that equate
demand and supply

« Adjust the prices alternatively on each side of the market

1. Fix the prices (v,) and find the prices (u,)

Yyey Hxy t Uxo = Ny foreachx € X
2. Fix the prices (u,) and find the prices (v))
Yxex Hxy T Hoy = m,, foreachy €Y

3. Iterate these procedures (coordinate descent procedure)

Theorem 5
Under Assumption 1 and 2, the IPFP algorithm converges to the solution of (4.5) and to the corresponding
average utilities u and v
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The performance of the proposed algorithms

* Test on the Choo and Siow model

* The IPFP algorithm

 Extremely fast compared to standard optimization or equation-solving methods

* The min-Emax method of (5.1)

 Slower but it still works very well for medium-size problems
* Applicable to all separable models
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6. Parametric Inference

2024/5/20 IR EE = 2024#7
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Parametric model

Single matching market assumption

 Focus on observations from a single matching market

Need for parametric model

e Joint surplus functions Cngy and distributions P4 and Qf, with parameters A
Sampling Assumption

At household level

 Consist of H households, including couples and singles

* Number of individuals § = ¥, N, + Y, M,,, where Nyand M,, are the number of
men and women in the sample

P

» Empirical frequencies #i,, = N,,/S and i, = M,,/S
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Estimation method

Matching patterns and Margins

* Observed matches fi,, satisfy:
Yyey Hay + Uy = Ty vx € X
Yex My + oy = iy vy ey (6.1)

» Data assumed from a population with true parameter 4,
Social Surplus and stable matching

» Social surplus:

W(d’/l; 7"\') = MaXyem () (Z Hxy q);}y + gl(ll; 7))
Xy

- Stable matching u?(#) computed efficiently
Estimation methods for 4

1. Maximum likelihood estimation

2. Moment matching method

3. Minimum distance estimator

2024/5/20 IR EE = 2024#7
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Maximum likelihood estimation (MLE)

1. Compute the optimal matching with parameters A for given populations of men and women
* Fix 71, and m,, impose constraints (6.1)

2. Simulated number of households:
= Z(x,y)eXxy ﬂ;}y + erx Hxo + Zyey :UOy - erx ny + Zye’g my — Z(x,y)e)(x’y :u%y

3. Observed matches:
 ul,: Number of single men with characteristic x
. Mf}y : Number of single women with characteristic y

* puf,: Number of (x,y) couples

4. Log-likelihood function:

1ogL(,1)—22 xylog +zuxolog”"°+z floy 10 g”(’y

x€X YyEUY XEX yEY

« Maximum likelihood estimator AYLE;
« Consistent, asymptotically normal, and asymptotically efficient under the usual set of assumptions
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Moment-based estimation in semi-linear models

Alternative to MLE:

« MLE is powerful but often difficult to maximize due to several local extrema

Conditions for moment-based method:

1. Distribution of the unobserved heterogeneities must be parameter-free (e.g. Choo and Siow, 2006)

2. Parametrization of the @ matrix must be linear in the parameter vector

¢ q)%y = Ellgzl ikqbalccy
« 2€eRK and ¢ := (¢, ..., p%) are K known linearly independent basis surplus vectors

Moment-matching estimator:

* Matches predicted moments with empirical moments:
erx,yey ﬁxyqb!;y - erx,yey M%yqbalc{y vk

* The moment-matching estimator:

AMM . arg maxleRK( z ﬁxyq)%y — W(CI)AJT))
x€X,yeY
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Minimum distance estimation

Mixed hypothesis:

Estimation process:

« Choose A to minimize ||D’1||z for some positive definite matrix £2

* Particularly appealing when distributions P, and @, are parameter-free and

surplus matrix @4 is linear in the parameters
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/. Empirical Application

2024/5/20 IR EE = 2024#7
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Testing methods on Choo and Siow's dataset

Objective:

 Testing Choo and Siow's specification against alternative models
Selected sub-sample:

« Time period: 1970s wave (younger marriage age)

« Age range: 16-40 years

« Sub-sample: “non-reform states”
« 75,265 observations representing 13.3m individuals

Analysis approach:
* Non-parametric surplus models fit all separable models so it's hard to choose between models

* Two steps process
1. Fit parametric surplus models:
* Use semi-linear model and select basis functions (¢%,) using Bayesian Information Criterion (BIC)
2. Fit alternative specifications
« Utilize chosen basis functions and test different error term distributions
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Heteroskedastic logit models

Method:

+ Add heteroskedasticity to benchmark model while maintaining scale
normalization

 To determine the best fit, use BIC
Findings:
« Gender heteroskedasticity: minimal improvement in fit, worsens BIC

« Gender and age heteroskedasticity: significant improvement in both fit and BIC
* Preferred model: replace ¢;), + 1,; with o,&;), + 71y
* 0, = exp(oyx + 0,x%), 7, = exp(7y)
* Results:

* +294 points of log-likelihood and +25.1 points on BIC
- Estimated parameters: 7, = 0.16, g, from 0.40 at age 16 to 2.49 at age 40
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Impact on surplus share

 Heteroskedasticity affects surplus share
In matches:

Uy CIX'I()E;IJ()LX
Uy + v,  oxlogug + 7y logugy
* Figure 1: Surplus share ratio for same-
age couples in 3 models
(homoscedastic, gender-

heteroskedastic, and gender- and age-
heteroskedastic)

* Men’s surplus share increases with age
in gender- and age-heteroskedastic
model

Man's share

2024/5/20 B

5202447
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REVIEW OF ECONOMIC STUDIES
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FIGURE 1
Men’s share of the marriage surplus in the logit models
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Flexible MNL models

Background:

* Nested logit model limitation:
* Equal correlation between all alternatives in a nest
* Not suit for capturing age-local correlations

Model choice:

* Flexible coefficient multinomial logit (FC-MNL) model (Davis and Schiraldi, 2014)
Method:

« Reformulate as an MPEC

» Maximize log-likelihood for parameters and U under constraint VG (U) = VH(® — U)
Model specification:

 Substitution patterns matrix:

b () . ,

x - ify+y
b, =9ly—v'l | ,
1 ify=y

 Similar for women’s side with b,, (y) divided by |x — x’|
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8. Concluding Remarks

2024/5/20 IR EE = 2024#7
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Concluding remarks

Validation of assumptions:

 Separability and large market assumptions are tested and supported by the simulations
(Chiappori et al., 2019b)

Potential extensions:
e Continuous characteristics

» Dupuy and Galichon (2014) address this issue for the Choo and Siow model using the theory of extreme
value processes and propose testing the number of relevant dimensions

Broader applications:

» Beyond bipartite matching

« "Roommate” problem (Chiappori et al., 2019a)
* Trade on networks with transfers (Hatfield and Kominers, 2012) & (Hatfield et al., 2013)

Relaxing utility assumptions:
 Imperfectly transferable utility and separable logit heterogeneity

« Non-transferable utility and a similar form of heterogeneity
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