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Objective
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均衡配分の計算を効率化・並列化したい!
To Make Equilibrium Calculation Efficient & Parallel!

Nguyen & Dupuis
Network Sioux Falls Network



Abstract

← Proposed in this paper
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User Equilibrium / UE (利用者均衡配分)

Frank-Wolfe Algorithm

Simplicial Decomposi8on
(SD)

Disaggregate Simplicial Decomposi=on 
(DSD)

均衡配分の種類

1956

1979

1992

cf. スタートアップゼミ#2 by 増田さん



l Proposes an improved SD for UE problem, allowing the decomposed 
subproblems for each OD pair to be solved in parallel.
利用者均衡配分のSD法を改善、部分問題の分解によりODペアごとに並列
計算を可能に

Novelty / Utility / Reliability

4

Novelty

Utility

Reliability

l Requires fewer shortest path calcula=ons and readily adapts to changes in 
network topology, especially useful for large-scale networks.
最短経路探索の回数が減り、ネットワーク変化に容易に対応
→大規模ネットワークで有用

l Validates the algorithm’s performance through numerical experiments on 
benchmark problems and a new large-scale network.
ベンチマーク・大規模ネットワークの数値実験により検証
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Solution 
Algorithms
• Link-base: Frank-Wolfe algorithm, Gauss-Seidel iteration method
• Path-base
• Origin-base (This paper)

2024/5/13 7

cf. 理論談話会#5 by 古橋さん
“An alterna*ng direc*on method of mul*pliers for solving 

user equilibrium problem”

← This paper (DSD)

“Larsson and Patriksson (1992) solved an OD-based auxiliary problem,
and updated the solu*ons through a convex combina*on of extreme points.”

ODベースの補助問題を解き、極点の凸結合を通じて解を更新
“the decomposed subproblems can be solved in parallel.”

分割された部分問題が並列に解ける
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𝑝 𝑞
Origin Destination

𝑎
↑Arc (Link)

𝑖

𝑉! 𝑊!

l Consider sta8c traffic assignment problems, modelling peak-hour urban traffic
ピーク時の都市交通における需要固定型利用者均衡配分モデル
Symbol Definition

G = (N,A) Transportation network (ネットワーク)

N Set of nodes (ノードの集合)

A Set of directed arcs (有向リンクの集合)

a ∈ A A directed arc (有向リンク)

ta(f) Positive travel time for arc a (リンク aの正の旅行時間)

f Network flow (交通流)

C ⊂ N ×N Set of OD pairs (ODペアの集合)

(p, q) ∈ C An OD pair (ODペア)

dpq Positive flow demand for (p, q) (ODペア (p, q)の正の需要)

fapq Flow from p to q through a (リンク aを通る pから q へのフロー)

fa =
∑

(p,q)∈C fapq Total arc flow (リンクの総フロー)

i ∈ N A specific node (特定のノード)

Wi, Vi Arcs initiated/terminated at i (ノード iで始まる/終わるリンク)



Wardrop’s Principles
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1. User Equilibrium: 等時間原則
The journey +mes in all routes actually used are equal and less than those that 
would be experienced by a single vehicle on any unused route.
利用される経路の旅行時間は皆等しく、利用されない経路の旅行時間よりも
小さいか、せいぜい等しい。

2. System Op=mal: 所要時間最小則
The average journey +me is a minimum.
道路ネットワーク上の総旅行時間が最小となる。
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UE/FDの定式化 ‒ 等価最適化問題への変換

2.1 UEの定式化 29

n Wardropの利⽤者均衡の等価最適化問題 '' (' : リンク)の旅⾏時間
(': リンク)の交通量
!!"#: ODペア"#間のパス$の流量
&"#: ODペア"#間の分布交通量
*',!"# : ODペア"#間のパス$がリンク)を
含むか否か（True=1, False=0）

• ⼗分性の証明（詳しい証明は教科書や昨年度資料参照）
UE/FD-PrimalのKKT条件が元の問題と⼀致することにより証明できる

• 解の⼀意性の証明（詳しい証明は教科書や昨年度資料参照）
変数の実⾏可能領域が凸（∵制約条件式が全て線形）
⽬的関数が狭義の凸関数⟺ Hessianが正定値（ ∵リンクパフォーマンス関数が単調増加）

⽬的関数は直感的には下のように理解できる

cf. スタートアップゼミ#2 by 増田さん



Formulation: Traffic Assignment Problem

10

𝑝 𝑞
Origin Destination

𝑎
↑Arc (Link)

to be presented can be modified for use in elastic demand and combined models.

The fixed demand Traffic Assignment Problem may, in both cases of optimality principles
discussed above, be stated as:

[TAP] min T (f) =
∑

a∈A

ga(fa)

s.t.
∑

a∈Wi

fapq −
∑

a∈Vi

fapq =

⎧

⎪

⎨

⎪

⎩

dpq if i = p
−dpq if i = q

0 otherwise
∀ i ∈ N ∀ (p, q) ∈ C

∑

(p,q)∈C

fapq = fa ∀ a ∈ A

fapq ≥ 0 ∀ a ∈ A ∀ (p, q) ∈ C.

We will refer to this formulation as the arc-node formulation.

The traffic assignment problem has received a lot of attention; partly because of its
practical importance, partly because the size of real life problems makes it a challenge
for algorithmic development. Methods applied to traffic assignment include linearization
and cyclic decomposition methods, and dual approaches.

The next section offers a review of the basic linearization methods applied to the traf-
fic assignment problem. In Section 2 we present the disaggregate simplicial decompo-
sition approach. A specialized method for the restricted master problem is also given.
The method combines a scaled reduced gradient algorithm with an approximate Newton
method. Numerical experiments for some well known problems and a new large-scale
network is reported in Section 3, and in Section 4 we reach some conclusions about the
algorithmic performance and present suggestions for further research and developments.

1 Review of some linearization methods for traffic

assignment

One class of algorithms commonly applied to the traffic assignment problem is based on it-
erative linear approximations of the objective; the basis for this algorithmic class is the well
known Frank-Wolfe method,[10] first developed for quadratic programming. It was sug-
gested for the traffic assignment problem by Bruynooghe et al.[11] and Murchland;[12]

LeBlanc et al.[13] showed that it was a viable approach by solving a real-world prob-
lem. This class of methods also includes extensions such as partan directions[14] and
the related method of Lupi,[15] the modified search direction of Fukushima,[16] and the
restricted simplicial decomposition method of Hearn et al.[17] The column generation
methods applied to traffic assignment, such as the one given by Leventhal et al.,[18]

also belong to this class. In the following, we will outline the development of the various
methods in this class, and relate them to each other. Especially, we establish the strong
relations between simplicial decomposition algorithms for problems defined over Cartesian
product sets and the column generation methods.

2

←流量保存則

←流量は非負

←旅行時間の最小化

Introduction

Consider a transportation network G=(N ,A), where each directed arc a ∈ A is associated
with a positive travel time, ta(f). This travel time, or transportation cost, measures
the disutility of using the arc as a function of the network flow f . The functions ta(f)
are usually referred to as arc performance functions, and are monotone as a result of
congestion. For certain pairs of origins and destinations, (p, q) ∈ C, where C ⊂ N ×N ,
there is a given positive flow demand dpq. Each O-D pair (p, q) is associated with a specific
commodity. We denote the commodity flow directed from node p to node q through arc
a by fapq, giving rise to the total arc flow equation fa =

∑

(p,q)∈C fapq. To measure the
commodity flow into and out of a specific node i ∈ N , we define Wi and Vi to be the
sets of arcs initiated and terminated at node i, respectively. The problem of determining
a network flow fulfilling the travel demands and a prescribed performance criterion is
referred to as the traffic assignment problem.

In this paper, we consider static traffic assignment problems, modelling peak-hour urban
traffic. Two main principles of optimality are normally considered. These are attributed
to Wardrop,[1] although Pigou[2] had already discussed these principles in similar terms.
The first principle of optimality is based on the intuitive behaviour of traffic, i.e., each
user of the traffic network seeks to minimize his/her own travel time; it is therefore known
as the principle of user equilibrium. With the assumptions that each function ta(f) is
integrable and that the Jacobian of t = (ta) is positive semidefinite for all feasible flows,
Wardrop’s first conditions of optimality can be formulated as a convex mathematical
program (e.g. Dafermos[3]). First to formulate this program are Beckmann et al.,[4] in
the case of separable cost functions. The assumption that the travel cost functions are
integrable is, however, in some applications too restrictive. Nonintegrable functions ta(f)
correspond to an asymmetric Jacobian of travel costs. The problem is therefore known
as the asymmetric traffic assignment problem, and may be formulated for instance, as
a variational inequality (Smith;[5] Dafermos[6]), a nonlinear complementarity problem
(Aashtiani;[7] Aashtiani and Magnanti[8]) or as a, generally nonconvex, mathematical
program by the use of so called gap functions (e.g. Hearn et al.[9]). If separable costs are
considered, the corresponding mathematical program will have an objective with additive
terms ga(fa) =

∫ fa

0 ta(s)ds.

The second optimality principle is known as the system optimum principle, and corre-
sponds to the situation in which the whole transportation system’s disutility is minimized.
The flows corresponding to the system optimum must be imposed upon the users, thus
giving a problem of prescription, as opposed to the problem of description in the case of
user equilibrium. Under the assumption that each function ta(f) is monotone and convex,
this principle can be shown to be equivalent to a convex mathematical program, and the
objective will have additive terms ga(f) = ta(f)fa.

There are a number of different versions of the traffic assignment problem. It is often
extended to incorporate elastic demands; mode choice and trip distribution are sometimes
included in combined models. In this paper, we limit ourselves to integrable travel cost
functions and consider the basic model of traffic assignment with fixed travel demands and
travel cost functions without link interactions. The reader may note that the algorithm

1

↑ Arc-Node Formula=on
リンク-ノード定式化
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UE/FDの解法

2.2 UEの解法 30

n ⾮線形最適化問題の⼀般的な解法

ステップA：降下⽅向の探索
どの⽅向に向かえば⽬的関数が減少するか

ステップB：ステップサイズの探索
降下⽅向にどこまで進めるか

ステップAとステップBを繰り返すことで局所最適解を⾒つける

（UE/FD-Primalのような）凸計画問題では，局所最適解が⼤域的最適解に⼀致する→解の⼀意性

⽬的関数が凸関数で，実⾏可能領域が凸集合であるような最適化問題
!

"

! = $(") !

"

! = $(") 6が凸関数
⇔任意の8, :に対して，
;6 8 + 1 − ; 6 : ≥ 6 ;8 + 1 − ; : ∀; ∈ [0,1]

→関数上の任意の2点をとって線分を引いた時，その線
が必ず元の関数より上に来るnot 凸 凸

cf. スタートアップゼミ#2 by 増田さん
_User Equilibrium with Fixed Demand_



Frank-Wolfe Algorithm
「降下方向の探索」→「ステップサイズの探索」を繰り返し行う

l Linearized Subproblem: 部分線形化問題

l Line Search Problem: 直線探索問題
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1.1 The Frank-Wolfe algorithm

The feasible direction method of Frank and Wolfe[10] is applicable to any nonlinear op-
timization problem with a pseudoconvex objective and linearly constrained feasible set;
its performance is well known due to extensive research into the method and its use in
various applications. The method has several good qualities; it is easy to understand
and simple to implement. The core storage needed is small, and the algorithm is able to
utilize problem structure. Both these properties are advantageous because of the size of
practical problems. For convex problems, the linear subproblem provides a lower bound
on the optimal objective value; this convergence controllability is an advantage compared
to many other nonlinear programming methods. For problems defined over Cartesian
product sets, the algorithm is amenable to parallel computation in the subproblem phase.

As applied to the user equilibrium case of traffic assignment, the algorithm has a nice in-
tuitive interpretation in behavioural terms. In iteration k, a feasible flow, f (k), is observed
in the network G. For every pair (p, q) of origins and destinations, the shortest route from
p to q is calculated given the current flow f (k), and a portion of the flow is shifted to the
shortest routes, resulting in a new feasible flow f (k+1) with a decreased objective value.
The algorithm is reasonable from an intuitive point of view: the shifting of some flow to
the currently shortest routes is the result of the decisions of individual travellers to seek
their own shortest route to their destinations. For comparison, the algorithm is described
below.

The algorithm is initialized by the determination of a feasible solution f (0), for instance
as an all-or-nothing assignment. At iteration k, the linearized subproblem

[LP] min T (y) = T
(

f (k)
)

+ ∇T
(

f (k)
)T

·
(

y − f (k)
)

s.t.
∑

a∈Wi

yapq −
∑

a∈Vi

yapq =

⎧

⎪

⎨

⎪

⎩

dpq if i = p
−dpq if i = q

0 otherwise
∀ i ∈ N ∀ (p, q) ∈ C

∑

(p,q)∈C

yapq = ya ∀ a ∈ A

yapq ≥ 0 ∀ a ∈ A ∀ (p, q) ∈ C

is solved. This problem is equivalent to |C| shortest route problems with arc costs g
′

a

(

f (k)
a

)

.

The result is a shortest route pattern ŷ(k), and a lower bound, T
(

ŷ(k)
)

, on the optimal
objective value. A line search problem

[LS] min
l∈[0,1]

T (l) = T
(

f (k) + l · (ŷ(k) − f (k))
)

is solved, with a solution l(k) as the optimal steplength, which gives the new iteration
point f (k+1) = f (k) + l(k) · (ŷ(k) − f (k)). The upper bound on the objective value is updated
and the process is repeated. The algorithm is terminated when the relative difference
between the bounds are smaller than an a priori set parameter. As suggested by LeBlanc
et al.[13] one may alternatively terminate when the changes in the arc flows are small.
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←旅行時間の最小化

←流量保存則

←流量は非負

𝑝 𝑞
Origin Destination

𝑎
↑Arc (Link)



Frank-Wolfe Algorithm
l Efficient in the first itera=ons 初期反復における効率
l Ease of implementa=on 実装の容易さ

l Convergence rate is arithme=c

→ Slow convergence rate in later itera=ons 収束速度の遅さ
l Search direc=on tend to be perpendicular to the steepest descent 

direc=on as itera=ons increase

反復が進むと探索方向が最急降下方向と直角に近くなる
l Genera=on of cyclic flows, which degrade performance

循環フローによる性能低下

14

Pros

Cons
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The Frank-Wolfe algorithm has been implemented in a number of program packages, for
instance traffic.[19] The performance is therefore well known among scientists and prac-
titioners. The algorithm is experienced to be efficient in the first iterations. The overall
performance of the algorithm is, however, not fully satisfactory. The theoretical conver-
gence rate is only arithmetic,[20, 21] and the algorithm is, in later iterations, characterized
by jamming. The main reason for this behaviour is that the search direction ŷ(k) − f (k)

generated by the subproblem solution tend to be perpendicular to the steepest descent
direction as k increases. (In the traffic assignment context, a discussion on this topic may
be found in Lupi.[15]) Moreover, it has been found that, in practice, the algorithm may
generate cyclic flows,[22] although an optimal solution can not contain cycles.[23] These
cyclic flows are very unlikely to be removed and thus degrade the performance of the
method.

Different suggestions have been made for changing the search directions or steplengths to
gain in efficiency. For the general problem, examples of modifications include the away
steps of Wolfe,[21] Holloway’s extension[24] and the accelerated Frank-Wolfe algorithms
of Meyer.[25] Modified Frank-Wolfe algorithms applied to traffic assignment include par-
tan directions,[14] the modified steplengths of Weintraub et al.[26] and the modified
search directions of Fukushima,[16] among others. Some modifications are reported to
show significantly improved efficiency.

1.2 Simplicial decomposition algorithms

An important group of modifications of the Frank-Wolfe algorithm are the simplicial
decomposition (SD) algorithms based on Carathéodory’s theorem (see e.g. [27]). A direct
consequence of this theorem is that any point in a bounded polyhedral set X can be
described by a convex combination of its extreme points. In SD algorithms, extreme
points are generated algorithmically by the solution of the linear Frank-Wolfe subproblem.
Alternately, a so called master problem, defined by a restricted set of extreme points, is
solved in order to generate a new iteration point.

For the ease of presentation, we here consider a general convex problem over a bounded
polyhedral set, which is formulated as

[NLP] x∗ ∈ arg min
x∈X

T (x).

To formalize the above, suppose that in the kth iteration, the set of stored extreme points
is
{

ŷ(1), ŷ(2), . . . , ŷ(l)
}

, where l ≤ k. Then the master problem is

[MP] min T

(

l
∑

i=1

λiŷ
(i)

)

s.t.
l
∑

i=1

λi = 1

λi ≥ 0 i = 1, . . . , l.

The master problem generalizes the line search in the Frank-Wolfe algorithm. For l > 2

4

Simplicial Decomposition (SD)
均衡解を端点解 (all-or-nothing配分) の凸結合 (重み付き重ね合わせ) と捉え、
それらのウェイトを求める

l Nonlinear Problem: 非線形問題

l Master Problem: マスター問題
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λ!: 非負の重み係数で和が1

Χ: 有界凸多面体集合

l MP generalizes the line search in the Frank-Wolfe algorithm.
MPはFrank-Wolfeアルゴリズムの直線探索を一般化したもの。

l Converges with a linear rate, and the convergence is finite, allowing removing extreme points with small weights from the problem.
線形収束し、収束が有限であるため、重みが小さな端点を削除することが可能になる。
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1.3 Column generation algorithms

The traffic assignment problem may alternatively be formulated using route flow variables.
For each pair (p, q) of origins and destinations, we denote the set of simple routes from p
to q by Rpq and the flow on route r from p to q by hpqr. By defining an arc-route incidence
matrix (δpqra) for G, i.e., δpqra = 1 if route r ∈ Rpq contains arc a, and 0 otherwise, arc
flows may be calculated from route flows according to the following relation.

fa =
∑

(p,q)∈C

∑

r∈Rpq

δpqrahpqr

The traffic assignment problem is then equivalently formulated as

[TAP] min T (f) =
∑

a∈A

ga(fa)

s.t.
∑

r∈Rpq

hpqr = dpq ∀ (p, q) ∈ C

hpqr ≥ 0 ∀ r ∈ Rpq ∀ (p, q) ∈ C
∑

(p,q)∈C

∑

r∈Rpq

δpqrahpqr = fa ∀ a ∈ A.

We will refer to this formulation as the arc-route formulation. It can be traced back to
Gibert,[51] and Dafermos and Sparrow,[52] although route flow variable formulations
are well known from linear multicommodity flows, see e.g. Ford and Fulkerson[53]

and Tomlin.[54] The explicit use of this formulation requires that all possible routes are
enumerated a priori; since, in general, the number of routes grows exponentially with the
size of the network, this is obviously impractical for large-scale applications.

To prevent all routes being enumerated, Gibert suggests generating the routes as needed;
later, Leventhal et al.[18] proposed the same technique, which works as follows. Assume
that a nonempty subset of the routes, R̂pq, between p and q, has been generated, and that
the restricted problem has been solved. By traversing the corresponding flow through the
network and finding the shortest routes for all O-D pairs, new favourable routes may be
generated. This corresponds to the subproblem phase of the Frank-Wolfe algorithm. The
restricted set of routes is augmented, and the process is repeated until no more favourable
routes can be found. This procedure is known as column generation.

The column generation methods, as applied to the arc-route formulation of the traffic
assignment problem, differ mostly with respect to the order in which the route genera-
tion, restriction and a cyclic decomposition is combined.[55] The basis for most column
generation algorithms is the Gauss-Seidel type decomposition method of Dafermos and
Sparrow.[52] The decomposition is made over origin-destination pairs, and a so called equi-
libration operator approach is used on a priori generated routes within each commodity.
The operator shifts a portion of the flow from the most expensive route towards the least
expensive one, so that the two routes have equal cost; if this is not possible, the most
expensive route will be given a zero flow. This technique is applied until the O-D pair is
(approximately) equilibrated, after which it is applied to the next O-D pair. Bruynooghe
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↑ Arc-Route Formula=on
リンク-ルート定式化

(𝛿"#$%): リンク-ルート接続行列
└ルート𝑟がリンク𝑎を含めば1
ℎ"#$ : ルート𝑟上の𝑝→𝑞へのフロー

(これはノードとリンクの例)

incidence matrix

l If enumerated, grows exponentially with the size of network.
全経路を列挙すると、ネットワークが大きくなると実用的ではない。

l →Solve restricted problem, find the shortest routes, and repeat.
l →制限問題を解いて最短経路探索をするのを繰り返す → Column Generation Method



Contents

18

User Equilibrium / UE (利用者均衡配分)

Frank-Wolfe Algorithm

Simplicial Decomposi8on
(SD)

Disaggregate Simplicial Decomposition 
(DSD)

1. [TAP] Traffic Assignment Problem

2. [FW] Frank-Wolfe algorithm

3. [SD] Simplicial Decomposition

4. [DSD] Disaggregated Simplicial Decomposition

5. Numerical Experiments

6. Conclusions



Disaggregate Simplicial Decomposition (DSD)

19

sition.

Now, consider again the general problem [NLP], and assume that the feasible set is a
Cartesian product, i.e., that X =

∏n
i=1 Xi, and T (x) = T (x1,x2, . . . ,xn). Assume further

that, for each separate set Xi, mi extreme points, denoted by
{

ŷ
(1)
i , ŷ(2)

i , . . . , ŷ(mi)
i

}

, have
been generated. If the strategy of using one convexity constraint per individual set Xi is
applied in a simplicial decomposition algorithm, the master problem [MP] is replaced by

[DMP] min T

⎛

⎝

m1
∑

j=1

λ(j)
1 ŷ

(j)
1 ,

m2
∑

j=1

λ(j)
2 ŷ

(j)
2 , . . . ,

mn
∑

j=1

λ(j)
n ŷ(j)

n

⎞

⎠

s.t.
mi
∑

j=1

λ(j)
i = 1 i = 1, 2, . . . n

λ(j)
i ≥ 0 j = 1, 2, . . . , mi i = 1, 2, . . . n.

Since each set Xi is represented separately, we will refer to this problem as the disaggregate
master problem, and the decomposition scheme as the disaggregate simplicial decomposi-
tion (DSD) algorithm. Although the number of variables in [DMP] is, in general, larger
than in [MP], the constraints are still highly structured, so that specialized methods may
be employed for its solution.

2.1 Disaggregate simplicial decomposition for the traffic assign-

ment problem

Consider again the problem [TAP]. Disregarding the implicit arc-flow defining constraints,
the entire feasible set is actually a Cartesian product with respect to the separate com-
modities, that is, the constraint matrix has a block-diagonal shape. This enables the use
of disaggregate simplicial decomposition by using one convexity constraint in a disaggre-
gate master problem for each origin-destination pair. This improvement has, however,
not been fully exploited for the symmetric traffic assignment problem.

In order to formulate the disaggregate master problem, we assume that a nonempty subset
R̂pq of the set of simple routes Rpq is known. In the disaggregate master problem, each
convexity variable λpqi will be associated with a route i in R̂pq, and denote the portion
of the demand dpq distributed along route i. Let λpq be the vector of convexity variables
λpqi for all i ∈ R̂pq. The vector λ then consists of all such λpq.

The arc flows may be calculated from the weighted route flows according to:

fa =
∑

(p,q)∈C

dpq

∑

i∈R̂pq

δpqiaλpqi. (1)

The function T (f) is, through (1), a function of the convexity variables λ; the notation
T (λ) will therefore be used in the following.

Utilizing the disaggregated representation the restricted master problem becomes:
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[RMP] min T (λ)

s.t.
∑

i∈R̂pq

λpqi = 1 ∀ (p, q) ∈ C

λpqi ≥ 0 ∀ i ∈ R̂pq ∀ (p, q) ∈ C.

The reader may note that, via the substitution hpqi = λpqidpq and (1), the problem [RMP]
is equivalent to the arc-route formulation of the traffic assignment problem, with the ex-
ception that only a subset of the routes is available. The two formulations of the traffic
assignment problem, either in terms of route flows, or in terms of arc flows, differ only
in the description of the polyhedron of feasible flows. From this simple observation, we
may conclude that the constraints of the arc-route formulation in fact define an inner
representation of the feasible set in the arc-node formulation of [TAP]. Moreover, the
disaggregate simplicial decomposition algorithm is the link between simplicial decompo-
sition and column generation methods for traffic assignment.

The DSD algorithm works as follows. Suppose that a disaggregate master problem, defined
by a restricted set of routes, R̂pq, ∀ (p, q) ∈ C, has been solved. Given this solution, the
shortest routes are calculated for all commodities. The sets R̂pq are augmented by the
routes not contained in the sets already, and the procedure is repeated. The algorithm
is valid; the proof given by von Hohenbalken[31] may be applied, although his approach
includes the dropping of all columns with zero weights.

The disaggregate master problem is a convex program with very simple linear constraints.
The same type of algorithms employed for [MP] may be used in the case of disaggregated
representation. The larger number of variables of the disaggregate master problem, how-
ever, makes it necessary to approximate the Hessian matrix by its diagonal whenever
Newton-type methods are used.

2.2 Algorithms for the disaggregate master problem

In this section, we will outline the two algorithms used for the solution of [RMP]. These
algorithms are used in combination; a first order method based on scaled reduced gradi-
ents is employed to reach a near-optimal solution, which is sufficiently accurate in most
applications. An approximate second order method, based on a quadratic, separable
approximation of the objective, is utilized when a highly accurate solution is demanded.

We first present a scaled reduced gradient method especially adapted to [RMP]. (For a
general description of reduced gradient methods, see e.g. Bazaraa and Shetty.[27])
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l Disaggregate Master Problem

l Restricted Master Problem

直積集合 で表し、
各部分集合 に対して1つの凸性制約を使って分割

λ!: 非負の重み係数で和が1
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λ"#&: 非負の重み係数で和が1
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ŷ
(1)
i , ŷ(2)
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重み付きルートフローからリンクフローを計算
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Numerical experiments

l FORTRAN-77 on a SUN 4/390 computer

l CPU: Sun 4300 (25 MHz)

l RAM: Max 224 MB

l (現在は2～4GHz, 4～16GBが家庭用PCでは普通)

l Shortest route / 最短経路探索:

Dijkstra’s algorithm

l Line search / 直線探索:

Armijo-type / アルミホ条件
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Numerical experiments
l Nguyen/Dupuis Problem

l 19 arcs, 13 nodes and 4 commodi8es
l CPU 8me: 0.15s
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Numerical experiments
l Sioux Falls network

l 76 arcs, 24 nodes and 528 commodities
l CPU time: 7.04s
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South Dakota



Numerical experiments
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Sioux-Falls Network

2024/5/13 51

ADMM is better than FW, OBA

Fewer blocks, Faster convergence.

cf. 理論談話会#5 by 古橋さん
“An alterna*ng direc*on method of mul*pliers for solving 

user equilibrium problem”

South Dakota
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Conclusion

l DSDはFrank-Wolfe, SDと比較して計算効率が同等か上回っている。
大規模ネットワークにおいてより効果的。

l 最短経路探索の回数が混雑していない状況では少なくて済む。
l リンクパフォーマンス関数の変化、需要、ネットワーク変化に応
じて再配分が容易に行える。

l 今後は他の非線形問題へのDSDの適用、および実装の改善につい
て研究を続ける。
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