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Abstract

This paper focuses on the mixing distribution of the mixed logit, aiming to bring:
* More flexibility

* Easier definition

* Less limitation in terms of properties

* Feasibility from a computational perspective

How: Logit distribution for the mixing distribution

- possibility to specify any useful function for the distribution shape
- good properties (summation to 1, positivity, easy sampling)

- easy to program and fast computationally

» Approximate generalization of previous studies by by Bajari et al. (2007), Fosgerau and Bierlaire (2007), Train
(2008), Fox et al. (2011), Burda et al. (2008) and Fosgerau and Mabit (2013)

* Higher goal: shift researcher’s focus from distributional constraints to dataset refining
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Introduction: mixed logit model

Standard logit model:
We consider a decision maker n, in a choice situation with J alternatives j:

Upj = Vj + 4j ¥
J /J \f

Observed part of the utility =~ Random part of the utility Unobserved Random part
Known to the researcher Unknown to the researcher information of utility
linear in explainable variables iid extreme value Observed Explainable
P(decision maker n chooses option i) P,; = Prob(V,; + €,; > V,,j + €, Vj # 1) information part of utility
,B,xm'
¢ if Vuj= ﬂ,xnj

Zj ef'ni

Assumptions and limitations:

» Systematic taste variation (if all observed characteristics are the same, the choice will stay the same)
* Proportional substitution across alternatives (ex. priceN = probability 1)

* No correlation for unobserved factors over time (ex. for repeated choices)
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Introduction: mixed logit model

Standard logit model:
We consider a decision maker n, in a choice situation with J alternatives j:

Upj = Vj + 4j ¥
J /J \f

Observed part of the utility Random part of the utility Unobserved Random part

Known to the researcher Unknown to the researcher information of utility

linear in explainable variables iid extreme value Observed Explainable
P(decision maker n chooses option i) = P,; = Prob(V,; +¢,; > V,,j + €, Vj # i) information part of utility

Xni
é@ if an — nj
Y eP

J
Is assumed the same for everyone

Assumptions and limitations:
» Systematic taste variation (if all observed characteristics are the same, the choice will stay the same)
* Proportional substitution across alternatives (ex. priceN = probability 1)

* No correlation for unobserved factors over time (ex. for repeated choices)
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Introduction: mixed logit model

Standard logit model:
We consider a decision maker n, in a choice situation with J alternatives j:

Unj = Vij + €0 Vi
nj /n] RJ\J

Observed part of the utility Random part of the utility
Known to the researcher Unknown to the researcher
linear in explainable variables iid extreme value

P(decision maker n chooses option i) = P,; = Prob(V,; + &, > V,,; +¢&,; Vj # i)

e@xm’
Pnl(ﬁn) ZJ eﬁéxnj if an =]

M F i, ORI BT Is assumed different for everyone
% B A& IR AR Py, = ani(ﬁn)f(ﬁ) dp - need to define distribution for B: 8. ~ f(6|6)
(mixing function) & P52 / o
Usually, B,,~N (b, w) (normal distribution)
“Mixed function” means weighted average of several (or lognormal, uniform, triangular,..)
functions

f(B) is the mixing distribution, which gives the weights
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Introduction: mixed logit model

Mixed logit model: (random coefficient specification -5 >4 LRI v oA KO v k)
We consider a decision maker n, in a choice situation with J alternatives j:

— / . . » &
U”j o ﬂ”xnf + Enj Random part of the utility Xnj [(FBRREHDATFLTHS
Unknown to the researcher B [EFEANZBITHREDORIELTHS
Observed part of the utility £ :Random with distribution f ey 1Fii.d. BEARISHIRZRTHS
Known to the researcher €+ iid extreme value

P(decision maker n chooses option i) = P,; = Prob(V,; + &, > V,,; +¢&,; Vj # i)

Pni(ﬁn) Ze] eﬁéxnj if an =f<f

Is assumed different for everyone
Py = ani(ﬁn)f(ﬁ) dp - need to define distribution for B: 8. ~ f(6|6)

Usually, B,,~N (b, w) (normal distribution)
(or lognormal, uniform, triangular,..)
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Introduction: mixed logit model

Mixed logit model: (random coefficient specification)

We consider a decision maker n, in a choice situation with J alternatives j:

/
Unj = ByXnj + €nj

Random part of the utility
Unknown to the researcher

Observed part of the utility

€ :iid extreme value

P(decision maker n chooses option i) = Py = Prob(V,; + e, > Vyj + ¢, Vj #i) | |sassumed different for everyone

e@" | — need to define distribution for B:
P,.(Bn) |- W if Vi =Usua||y, Bn~N(b,w) (normal distribution)
I

(or lognormal, uniform, triangular,..)

P, = j Poi(BF(B) dB

Simulation:

1. Draw a value of B, labelled S (sampling)

2. Calculate B, (B")

3. Repeat1and 2R times | R N

4. Average the results to get i =7 Z}: L.i(B") , then maximize the simulated log-likelihood: SLL=) "> d,;In P,
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Introduction: mixed logit model

Mixed logit model: (random coefficient specification)

We consider a decision maker n, in a choice situation with J alternatives j:

/
Unj = ByXnj + €nj

Random part of the utility
Unknown to the researcher

Observed part of the utility

€ :iid extreme value

P(decision maker n chooses option i) = Py = Prob(V,; + e, > Vyj + ¢, Vj #i) | |sassumed different for everyone

e@" | — need to define distribution for B:
P,.(Bn) |- W if Vi =Usua||y, Bn~N(b,w) (normal distribution)
I

(or lognormal, uniform, triangular,..)

P, = j Poi(BF(B) dB

Flexibility and advantages

 Random taste variation,

e Unrestricted substitution patterns

* Correlation in unobserved factors over time

e Can approximate any random utility model (see McFadden and Train (2000), or Train textbook)
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Limitations of mixed logit

* For the researcher, using the mixed logit is a two-part process
* Specification of the logit (parameters used in the utility function)
* Specification of the mixing distribution f(B)
* Usually normal or lognormal
* Johnson’s Sb
* Gamma
* Triangular

* Most distributions are limiting: “most researchers will probably agree that: whatever parametric
distribution the researcher specifies, he/she quickly becomes dissatisfied with its properties”
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A Logit-Mixed-Logit model (LML) 11

e x: Vector of observed attributes

* Situation: 1 decision-maker n, faced with one choice * [3: Vector of utility coefficient, varies randomly over people

Utility: Unj — ,B,anj + &nj * &: Random term representing the unobserved component of utility
i Xnj [FERHER ORI THS

Prob(n chooses i |f3,,) : Qni(B) = m B B ANICE T HZHEDAIMILTHS
1<) £y 12110 BIEAFHIHSBEETHD

* Mixing distribution F(f):
* Discrete with a finite support set S (WLOG as long as S is dense enough)
* Fisalogit distribution, i.e:

Probg, = p.) = W(Bla) =

e #(r) * z(B,): vector function of 3, chosen to fit a certain shape

PLELTD * a:vector of coefficients

seS

* Then the choice probability is:

. ( eafz(ﬂr) eﬁrfxl']f
Prob(n chooses i) = E WBla)-Qi(B) = Z 760 | Bix
res res Z ers’s Z ey
\ &seS je]

To be defined by the researcher
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A Logit-Mixed-Logit model (LML) 12

* Situation: 1 decision-maker n, faced with one choice
age . - / ° : 1
Utility: Unj — ,annj + &n; x: Vector of ol:.>s.,erved a'tt.rlbutes .
* [3: Vector of utility coefficient, varies randomly over people
* &: Random term representing the unobserved component of utility

eﬂﬁxm'

Qni(ﬂn) = —Zj ]eﬂﬁxnj

Prob(n choosesi | 8,,)

* Mixing distribution F(f):
* Discrete with a finite support set S (WLOG as long as S is dense enough)
* Fisalogit distribution, i.e:

a'zZ(fy) . . .
e *Ur  z(B,): vector function of 3, chosen to fit a certain shape

Zs S e 2s) * a:vector of coefficients
S

Probg, = p.) = W(Bla) =

Properties:
* Easy and flexible specification of probabilities
e? P || efrkni * Only need to describe the shape of the
Yees N X el distribution as summation to one, positivity are
already assured
* Can also approximate any choice model

* Then the choice probability is:

Prob(n chooses i) = Z W(Bla)-Q(B) = Z

res res ses
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Estimating LML model

* Situation: Multiple choices by each decision maker
* t: choice situation
* j,i: alternative
* n: choice maker

* We consider T choice situations, and the probability of choice sequence (i1, i5, ..., i)
Conditional probability:

P.(Brn) = 1_[ tht(ﬁn)

Unconditional probability: to be estimated

B, = anr(ﬂr W (B, |a)

reS

Does not need to
be recalculated at
each iteration

Log-likelihood LL = Z In(PF,) = Z 1n(zpnr(ﬂr)W(,3r|a))

n=1,...N n=1,..,.N TeS

Simulated log-likelihood
Using a subset S, SLL = z ln(z Por (Br)wr (Brla))

n=1,..,.N TeSy
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Variables for the mixing distribution
how to specily the z variables 7

e Z(br)
Prob(p, = ) = W(Bla) =

a'z(fs)
se§ e
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Variables for the mixing distribution

Normal

* Why: To try the LML on a simple example? To eliminate long tails of the usual normal and lognormal
* What: Normal distribution (IE%E&!\E) of mean and variance V ol UM L ML L L LA L L AL B

=0, 0°=02,—
=0, 07=10, m—]
§=0, 0?=50, —

0.8
* How: i e on— |

1/(p' b'b
F(B) = m(V) exp (—; (% ~ b’ + 7))

(pp‘a?(x)

Z is a second order polynomial (%I83()in f and this density can be represented exactly by

ea’z(ﬁr)

PrOb(ﬂn = ﬁr) = W(ﬂrla) = s p@2(bs)
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Variables for the mixing distribution

Higher order polynomials

* Why: Greater flexibility, reduce collinearity, describe a wide variety of shapes
« What: Specify z to be a higher order polynomial (%I8X) in B
* How: (case of 1-dimensional 3)

1
Legendre polynomials: family of polynomials Ly, ..., L,, such that f Ln()Ly(x)dx =0 ifn#mand L,(1) =1
1

B — min(p)
max(§) — min(p)

We specify the z variables as z, () = Lk(ﬁ) fork=1,..,K (K is the highest degree specified by the researcher)

The Legendre polynomials are only defined on [-1,..,1], so we use the transformation f=-1+2

Therefore, e Z(br)

Prob(s, = ) = W(Bla) = — With e® 2(Br) = p@' L1(Br)+L2(Br)+-+Lk(Br))
e S

seS

For multi-dimensional B, dependence among the elements of is captured though cross-
products of the terms of each element's polynomial.

We could also use another polynomial family such as Chebyshev, Bernstein,...
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Variables for the mixing distribution

Step functions

* Why: Estimate the model over different parts of the set S

* What: step functions

* How: (example with 2 dimensions)

We partition (73 Zl) S into G subsets (BB 58 &) (possibly overlapping) Hy, ..., H; and define the mixing distribution
for each subset

. 1i €EH
The z variables are the G indicators (¥§7~EJ%4) of which subset contains 8,: z(8,) = 14 (B;) = .f'BT g
g 0ifp, & Hy
Theref e 0 : :
erefore,  prob(g, = §.) = W(Bla) = R With e@'2(Br) = @' Ly (Br)r1hg (Br)
seS

¢ Choosing the number of subsets (which is also related to the number of parameters):

Saturated specification: a b C

Fig. 1. Overlapping step functions.
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Variables for the mixing distribution

Splines

« Why: Interpolation of a set of points (# 2 ##[H)

» What: Specify z so that the mixing distribution has certain values at certain points

* How: Splines — function defined piecewise by polynomials
(example with 4 points and 1-dimensional )

Let’s say you know the values that f(B) takes at points f1, B2, B3, Ba,ie f(B1) = @y, f(Bs) = a4
Therefore,

) —
ﬂ_z _ﬂ_l
asz —

)=yt g =50 =P Wh<Psh=aup)

ay — as ) o 1 2 3\4 5
+ — — - if < \/
a3 ﬂ4 —ﬁg(ﬂ ﬂg) ﬂ3 ﬁ J _

Then the mixing distribution is defined using the interpolation parameters

a1+

G-p) ifp<p | .

.
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Variables for the mixing distribution

Combination
To take advantage of the properties of each previous described variable setting, it is possible to
combine different functions:

* Step-function or spline for each single coefficient,

» Second-order polynomial to capture correlation over coefficients

* Fewer parameters for correlations than creating multi-dimensional step-functions or splines.

Equivalence to the method of sieves:

In the method of sieves, the estimation is performed by dividing the range of the function into a
sequence of intervals, called "sieves" or "bins." Within each sieve, a simpler parametric model is
assumed to approximate the true function.

Here, the use of polynomials and slives in the LML can be seen as a sieve method, with the number
of a parameters (i.e., the order of the polynomial and/or the number of steps/nodes) rising with
sample size, providing more flexibility in fitting the true distribution.
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WTP (Willingness-to-pay) space

where price variables should be estimatead

* Willingness to pay (3Z$A%E. B %H): amount of money or resources that an individual or group of individuals is
willing to increase the quantity of an attribute, usually given by

attribute coef ficient

price coef ficient
 WTP is usually overestimated in the preference space ; the better the fit, the less reasonable wtp
e Utility in WTP space and preference space:
Preference space: WTP space:
(we divide the utility by the scale parameter and

separate price and non-price attributes)

Scale parameter, fixed

Unjt — _(Ofn/kn)pnjt + (Bn/kn fxnjt + Enjt

/ P
Unjt — _)\npnjt T CpTnjt T Enjt Wy, = Cn/)\n

Unjt — _)\npnjt + ()\nwn)livnjt + Enjt

See Train and Weeks (2004)
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LML in WIP space

Preference space: WTP space:
age . — / . . > . —_— . / . .
Utility: Unj = ﬁnxnj + &y Wy, = Cn/)\n Unj — )\npn] T ()\n’wn) Tpj T Enj
300 Let X, B as:
PI’Ob(ﬂn =p) = W(ﬂrM) = _° By = [—Ay Apwy] and Xnj :[pnjrxnj]

a'Z(fs)
ESES ¢

Then, Uy, = B;QXn]. + &,
and the LML can be used
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LML with unequal probability sampling 22

* The log-likelihood was previously defined with equal probability of a sample B to be selected
* In the case of unequal probability sampling,

L= ) ln[ Y (Ln(ﬁr)/q(ﬁ,.))W(ﬂ,.la)CI(ﬁr)]
n=1,...N res
q(B): a probability mass function

SLL = ) ln[ > (Ln(ﬁr>/q(ﬂr))wn(ﬁrla)]

n reSy
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Application
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Application

Table 1
» Dataset: experiment about consumer’s choice among Non-price attributes.
video streaming services Atribate ovels
* Price and non-price attributes PR Vo5 (-commercials)
* 4 alternative video services + no service alternative between content No (baseline category)
* 1 1 ChOice Situations Speed of content TV episodes next day, movies in
availability 3 months (“fast content”)
* 260 respondents TV episodes in 3 months, movies in
6 months (baseling)
Catalog 5000 movies and 2500 TV episodes
(baseline)
10,000 movies and 5000 TV episodes
(“more content™)
2000 movies and 13,000 TV episodes
(“more TV, fewer movies™)
Data-sharing Information is collected but not shared
(baseline)
policies Usage info is shared with third parties

(“share usage")
Usage and personal info shared ("share
usage and personal”)
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Application: normal distribution

* Model: model in WTP space with normal WTP and lognormal price/scale coefficient

 Estimated first with Hierarchical Bayes (HB) to get the initial values for Maximum Simulated
Likelihood method

* Computation time: 4h in Stata
* Higher log-likelihood with the maximum likelihood estimates than the HB method

* Results:
* People are willing to pay $1.56 per month on average to avoid commercials

* Fast availability is valued highly, with an average WTP of $3.94 per month in order to see TV
shows and movies soon after their original showing

* People are willing to pay $2.70 per month to avoid their data to be shared
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Application: polynomials and splines 26

Polynomials
« Model: definition of S with 10%% points, 2000 draws of B for each

person WTP for Commercials
e Z variables: 6t order polynomials on each utility parameter and a Folynomial Model Spline Model
second utility parameter on each WTP pair

* Estimation using Maximum Simulated Likelihood method in Matlab
* Computation time: 16 minutes (optimized setup)

* SLL at convergence of 3864.85, compared to 3903.47 for the model
with a normal distribution

Splines
p WTP for Fast Content
L4 MOdel' Polynomial Model Spline Model

* 83 parameters

 Estimation in Matlab
* Computation time: 16 minutes (optimized setup)
 SLL at convergence of 3886.70

 Similar utility parameters shapes for polynomials and splines, but
different than normal

4

Fig. 2. Distribution of utility parameters.
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Discussion: more flexibility, or better data? 27

* LML = Fast and easy specification of flexible mixing distribution
e But, additional burden on the researcher: What shape for the distribution ? What range for each utility
parameter ?
* Different distributions can provide similar log-likelihood, so which one is the best and how to choose ?
* The range defined for the parameter (ex. Negative, positive,...) might lead to worst results than a
model without range restrictions

* The issue might be that the data does not contain enough information to exclude theoretically
implausible behavior

—> need for richer data that would lead to bigger differences in distributions and meet expected results

Sampling considerations in 2), 3), 4) might relate to Kim and Bansal (2023) and P43 & A/’s presentation ?
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Discussion: Limitations of the LML model: 28

Limitations of the LML model:

1. Delineating the relation of LML models to nonparametric estimation would enhance specification and
interpretation of models

2. Unequal probability sampling should improve the performance of the model and should be studied

3. The relationship between the statistics (mean, SD) of the estimated mixing distribution and the range
of coefficients used to define S should be studied, to define the best ways to define S for accuracy

4. The tails of distributions (not frequently observed behaviour) are important for policy and marketing
purposes, but the use of flexible methods increase the need for those behaviours to be actually
observed in the data for them to be simulated.

Sampling considerations in 2), 3), 4) might relate to Kim and Bansal (2023) and P93 & A/’s presentation ?
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Impressions

* This paper has a lot of mathematical results, but it’s difficult to grasp all of them and imagine the
dimensions, functions etc., as there are few examples, and the explanation is succinct

* There’s a big difference between understanding something and explaining it to someone else

 Since most researchers already only use a normal distribution for ,B, | wonder how many would
switch to an even more complicated setting, even if it allows for more flexibility
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Introduction: mixed logit model

Mixed logit model: (error components specification)

We consider a decision maker n, in a choice situation with J alternatives j: Xnj is a vector of observed variables relating to alternative ]

R S I, _ Z,; is a vector of observed variables that define the error
UF’U = O Xpj + Uy Znj Tt Enj Random part of the utility Y

—_— Unknown to the researcher correlation among alternatives

. ‘ tor of fixed coefficient
Observed part of the utility @15 avectorof fixed coetticients

Known to the researcher u is a vector of random coefficients with zero mean

&nj is an i.i.d. extreme value error term

Here, the goal is to create and estimate correlation among the utilities for different alternatives:
! / /
Cov(nn, TInj) — E(/-anni + Em‘)(ﬂnan + Snj) = T, Wan where W is the covariance of u,

How to choose the mixed logit specification:

 What is the goal: estimate the pattern of taste (random parameters) or choice prediction (error components)

 Number of parameters (usually less parameters used for random parameters specification so that the joint
distribution can be estimated)
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