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Abstract

BERGEIRETIVCE, ETIVOEREICKY, FRIRTEEMEOFIRPHEE/NIA-FDRYICOLABAIGEEDH 2.

In discrete choice modeling, model misspecifications may lead to limited predictability and biased parameter estimates.

Novelty
TS AZAREREIEL T-YRENEICHENTEIET, ETNORR AT EZEEICE T (CFRIAZR LSE3.

By dividing the deterministic terms into knowledge-driven parts and data-driven parts, this formulation increases the
predictive power of the models without sacrificing their interpretability.

MNLENLZENND'G A URF A FERR LR IR Tk LizLearning-MNL (L-MNL) & Learning-NL (L-NL) &2 2

They suggests Learning-MNL models and Learning-NL models with a new non-linear representation arising from NN.

Usefulness and Reliability
BT -FEERT-IERAWERERRT, FAMRE/NIA-FHEEDREDOMAICEVNT, L-MNLARERDET IV ZE LEIBILERT.

By conducting experiments using synthetic data or real-world data, L-MNL models outperform the traditional ones both in
terms of predictive performance and accuracy in parameter estimation.

Source Code: https://github.com/BSifringer/EnhancedDCM



https://github.com/BSifringer/EnhancedDCM
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Introduction

FRIR AT HETE & FRITEHE / Interpretability and Predictive Power
MNL
HTNIAN IR ARBEKZAWS BRI geE O « NIA-FDELh R EMEREDIFIEZ G ECKHLNS
Use simple parametric specifications in the utility function. — Good at Interpretability, such as VOT.
FRIRAIREMEZ A ES B2 FRIAMER G2 FRILREX | T-9Z2IRANLGBEZTEICELZENEL
Sacrifice Predictive Power when gaining Interpretability. — cannot adequately capture the underlying structure of the data
Complex DCM models (MXL, Latent Class Model, ...) and Advanced utility specifications (exponential, non-parametric, ...)
BHLET N ERENBVABRROKRET, T-9EE6ELFAhmL
More complex models and More advanced utility specifications allow for a better data fit and a better prediction.
ETINDEEDNFHAN>CNIBLENHBN, ZOREZKHEIDAEELL
Model specifications need to be known a priori, but determining the specifications remains a difficult task.
NN
FRIEREIENTHEY, BEHEDRECHIEDEZREFHI>THEKLED L
Good at Predictive Power and you don’t have to know the nature of true relationships among variables.
H AN BoNZEENTITVIRYI A-E# Z AW RIRA A R] 6E
The process generating outputs is black-box. So, you lose interpretability.
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Related work

RENFCHITEZT-TERENRE FEDEA / Applying data-driven methods in different transportation applications
BRABI1TONNDS LU T OET NP F IR ELEBRINTES

Different types of NN have been compared to the following models and methods
MNL(Agrawal and Schorling, 1996; Lee et al., 2018; Zhao et al., 2020)
NL(Mohammadian and Miller, 2002; Hensher and Ton, 2000)
Random Utility models(Sayed and Razavi, 2000; Cantarella and de Luca, 2005; Paredes et al., 2017)

Statistical methods(West et al., 1997; Karlaftis and Vlahogianni, 2011; Iranitalab and Khattak, 2017; Golshani et al., 2018;
Brathwaite et al., 2017)

fRIR IRt EEmE I IC, FRIHOBEANCETINEZLLE LTINS
Without discussing interpretability, comparing the models in terms of prediction power

Bei=E 28 / The machine learning community

R4 ERBEESVEETFRITEHMZE  Researches aiming at predicting, with high accuracy, a variety of choices

Hagenauer and Helbich(2017) : To classify travel mode choice, comparing MNL, NN, Naive Bayes(Rish et al., 2001),
Gradient Boosting Machine(Friedman, 2001), Bagging(Breiman, 1996), Random Forests(Breiman, 2001) and Support
Vector Machine(Cortes and Vapnik, 1995)

And so on...

Al Same as above



Related work

A BOLLECE EE5 B VWEFMLITEME / Innovative behavioral studies beyond the comparison of the both fields

Wonget et al. (2018)
Using a restricted Boltzmann Machine (Ackley et al., 1985) to represent latent behavior attributes.

van Ctanenburgh and Alwosheel(2019)
Develop a novel NN based approach to investigate decision rule heterogeneity amongst travelers.

Z0OM, Z1-IIRyrI-9%FRLERESVNONESNS, Some other studies using NN exist.
INGOAZRRICIE, AMUPTVEIRATREEEZ LGNS W FRIMREZ AT REE 975 B IR0,

These studies do not have the objective of finding a utility specification that allows high predictability while maintaining
straightforward interpretability.

BEEWMAR —J5YRZEIRICDLWT—/ The closest studies about the brand choice

NN-MNLET JL(Bentz and Merunka, 2020)
Using NN to discover non-linear effects in utility function.
Then, the re-specified MNL model is modified to include new variables which is the discovered non-linear effects.

Using NN only to determine the model specification — Estimating MNL model

So, interpretability... ? — X
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Implementing MNL as a neural network

Neural Network@—fig&B9 74 &RIH

BEN/Ehidden layer RO %@L T, A ZERinput space x%BE/0:0&H 3 H Hinterest output UICNYEY )32 TRERINS
U = h®(q% D) with ¢V = k9 (qUD),vj = 1, ..., L

q® =xT, LEREBORIEE
Convolutional Neural Network

BHAHEHNH, BREZERTSIIINIROEHAETD

U+1) _ () (J) ()
h =4 <Z h(s l+k) + a; >

B = {B1, ..., Bq}: the filter of size (1 X d), s: the stride of the convolution, «;: a bias term, g(:): an activation function
HEL =1, EFMHEEHgKx) =x, AIMFs =dEeTBEMNLETILEES
Y I NI AR # (softmax function) T TRE?’EYb‘Y&)bTLéeD/JI\*'JGJ EIRFERILERL

(a(Vn)). __° o
]ECn

BRI, categorical cross-entropy(CE) (Shannon, 1948)2FA\T, E—/J\1b<—jt,rﬂ—j<1t0)"fr%}§$£
min Z H,(o,y,) = Z Yin loglo;(V,)] © max L = Z Z Yin loglo;(V3)]

IlECp n=1iec,

eVin



Implementing MNL as a neural network

An illustrative example
Uin = Bc - %10 + B - X210 + €1, VIE C
X, = cost: travel cost, x, = time: travel time

BRBEEARRBIRNTOB/AILOVWTEL : : .
The choice set is the same for all individuals. Inpllt Filter Hld:‘it‘::l.l Activation Glltpllt
SM: Swissmetro layer @ © layer 'Y function layer

cost — ;‘.’

| time —  — i “Wear

F r__:"'\-__| K

| cost — oo i e 8 M

Train || = ___ > Yrain = CFE Loss

| time —@  ———---—- N o -~
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Fig. 1. By aligning inputs by class and convolving with a filter of equivalent shape and stride, we can retrieve linear utility specifications with a single CHM
layer. By ending the network with a softmax activation layer and a cross-entropy (CE) loss, we retrieve the same formulation as for the MNL model.
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Representation learning in discrete choice modeling

General formulation

Vin =|fi s B[+ ri(Qn; W)

Data-driven part, no a priori relationship is assumed

Knowledge-driven part, assumed interpretable
Q.. Input set: features, w: weights for each g € 9,

X, Input set: explanatory variables, f: parameters for each x € X,

U, = f(xn'ﬁ) + r(Qn; W) + &,

CDAERDE2IANE, FEETETIMEENBEHOEEEZRDDT-IEFENELLTHERTES
We may interpret the second term of this equation as a data-driven term finding the residual of a hand-modeled function

REBOEIRET WOMRIRAIRe 2R I 3128, ANEEE2D(X, Q)L T TVEDH
This formulation differs with the use of two input sets X, Q necessary for keeping discrete choice interpretability



Representation learning in discrete choice modeling

Modeling
U, = f(xn; ﬁ) + T(Qn; W) T &,
have all the benefits of expert modeling in discrete choice. produce a new representation of its associated input
include the availability of the f parameters’ Hessian and | |the Hessian is generally not available due to computational
thus their standard deviation approximation. complexity

H A E RIS X 5722 (the elasticity of a feature t on alternative i)
ann afm + arin

atin atin atin
FRIR AT BE b ZHEFF T 276, BOMNRIBIEKELTUILELHRNETS — aLf'” = 0 (The interpretability condition)

Otin
The elasticity must not depend on the representation term.



Representation learning in discrete choice modeling

Modeling

U, = f(‘xn'ﬁ) + T(Qn; W) + &,

have all the benefits of expert modeling in discrete choice.
include the availability of the g parameters’ Hessian and
thus their standard deviation approximation.

produce a new representation of its associated input
the Hessian is generally not available due to computational

complexity

Ein = ri(Qn; W) T Ein
s BICBWTMEONSA-FH EBEFBHICIE, AEELLTNONSMAEES VY LA DEBEEREL, ZBREHEOTVY
LIEDOMEEZREEEL, 2L TCGHAKREDRYZREELEINERSE,

To have unbiased parameter estimates in f(X,; ), one must avoid correlation between the specification and the random
terms known as endogeneity, avoid correlation of the random terms between each alternative and overall avoid utility

misspecification.

BADETIVE, T-IHREBEOFIEICLOT, BRoADRELABERN\ATRICLET VY -J1yhefMIETEILEBRIELTNS.

Our model aims at correcting for underfit due to misspecification and omitted variable bias thanks to data-driven methods.




Representation learning in discrete choice modeling

L-MNL Model formulation

Probability of selecting the choice alternative i for individual n
fL(X B)+7i(Qn;w)

P,(i) =
Tl( ) ZjECn efl(xrﬂ)-l_rl(gntw)

Using a Dense Neural Network as the Iearning method. Representation term r;,, is the resulting function of a DNN
_ z Wl(llcl)g q7(1L 1) (L D4 a(L 1)) n algL)
g(+) is the rectifier linear units (ReLU) actlvatlon function and qU) is recurrently defined as
[qn“)] = z wi g (qPw) +a?) + o

(0) being the vector of input features @,,.



Representation learning in discrete choice modeling

L-MNL Model formulation

Input Convolution Hidden
layer Filter layer

class 1

.

uuuu

Inputs € A

class §

-

W
Softmazx

-

Vi

Inputs € Q

P

Fig. 2. L-MNL model architecture. On the top, we have the | class generalization of a linear-in-parameter MNL model, as depicted in Fig. 1. At the bottom,

we have a deep neural network (e, multilayer and fully connected) that enables us to obtain the representation learning term r;. The terms from each
part are added together defining the new systematic function of Eq. (110

2024/6/13

Enhancing discrete choice models with representation learning
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Experiments

RRTE, LMNLETILY, BRAHIERELAS, FRIEELOREN LS 3N ERET 3

The experiments demonstrate how our L-MNL models increase the predictability of the MNL and NL models respectively while
keeping their interpretability .

Definition
Predictability: directly quantified in terms of likelihood TE([CKVEZEEELINS
Interpretability: the ability of the model to have both a quantifiable uncertainty of its parameters as well as an
understandable or meaningful association with its variables
ﬁ@?;?ﬁé'l‘i; ZOETIH, OEETTRER/NIA-TOTEEMEOIVELERZE)EQBRERIBER or BBRDHIZIE DEHEMED
En) SPL



Experiments

Benchmarking models

Logit(X)

DNN(n, Q)

DNN_L(n, X = Q)

L-MNL(n, X, Q)

The standard MNL model with linear-in-parameter
specification, and no learning component.

A Dense Neural Network for every alternative with
softmax loss. This is the NN-MNL model proposed
by Hruschka et al. (2004).

A modified version of the NN-MNL model proposed
by Hruschka et al. (2004) . Both of the linear utility
specification and the neural network. The latter can
be seen as finding the residual from the linear
input of X.

Learning logit model with n neurons in the hidden
layer ( H=n ). This model satisfies the
interpretability condition for all x . we limit the
complexity to a single layer (L = 1).

Input: x € X
Linear utility specification

X=0

Input: x € X' (= Q)

Input: Part of x € X’
Linear utility specification

Q=0
Input: g € 9

n neurons /
hidden layer

Input:
q€9(=X)

Input: g € 9

Parameters: | X|

Weights: n(|Q] + |C| + 1)

Weights:
(n+ D2l + ¢

Parameters: | X|
Weights: n(|Q| + |C])

All models have run for 200 epochs with an Adam optimizer (Kingma and Ba, 2014) running on default parameters from Keras
python deep learning library (Chollet et al., 2015).

Every model with a Neural Network has a 20% dropout regularizer following the DNN layer.



Experiments

Synthetic data experiments
L-MNLET LD aEZ F Rt REC EERE DM AN O AT 2DICERT -FEEHT 3.

We use synthetic data to better analyze the performance of our L-MNL model in terms of both prediction perfor- mance and
estimates accuracy.

Outline
ERT-YDERAE  How we generated synthetic data
EVTHIVOEERT, IRNTONYFV-IETINZNIA-FHE [CEAL TEHLBR
We perform Monte Carlo experiments to compare all benchmarking models on parameters estimation.
Z1-0VEOBMIIOWVWT, NNT7-FTIFvDZENHT
A scan on increasing number of neurons is introduced to analyze the impact of the NN architecture better.
ANEEX, QORISR VMERENH2HE DT

We investigate the case of strongly correlated variables between input sets X and Q.



Experiments

Data generation
EHR ZIERIRETIVEE XS, Guevara (2015) DERRTOVRICHKELT, LUTOMEEKETLICT-YERKT 3.

Consider a simple binary choice model. Following the generation process of Guevara (2015), we generate data based on the
following utility function.

Un =Vin + Ein, Parameters(8, = —1,8, = 0.5,, = 0.5, 8, = 1)
Variables~U([-1,1])

Vi, D, @ . @ q.- Error terms following a uniform distribution

.\-_-"h'_—-.
Inown relation unknown interactions

with

P = 5 2+ 0,042+ €,0) OB CRATRHRORRERERRT 20 DA EFFAE
ETIMERRENSIBZR TR EI L8 KAEYIIL-1T 3
Qin = Kin + an interaction term to represent unknown and undiscovered
causalities during the modeling phase
_ . simulate the situations where the modeler would misspecify the
Kin @ fori=1,2 utility due to an undiscovered interaction

EIRIE R (INIIX—MHERXRZ L  The result of choice is a Bernoulli random variable
ylnNBern(Pln(xn)); Yon=1—y1, VYn=1,...,N



Experiments

Monte Carlo experiment
Training set: 1000 synthetic individual observations
Test set: 200 synthetic individual observations
*Logit(Xrye) 1S @ “True Model”

Performing experiments 100 times.

FRIMERED R CREENIZET VENNA-ZADZERET

The best models in terms of predictive performance are the
neural network-based choice models

Ly FCOBFEICEENSY, LMNLEFILET-YORE
RWALRRZSZ, TAMZYNCREDOF AR ZER
Despite overfitting on the train set, our L-MNL gives the

best general representation of the data, achieving the best
predictive performance in the test set

L-MNL(25,X,Q) X = {p,a, b} 9 =1{q,c}
Log”:(xl) X = {p, a, b, q, C} _
DNN(25, Q) — Q={pab,q,c}

DNN_L(25,X = Q)

X ={p,ab,q,c} Q={pab,aq,c}

“Logit(Xerye) Xrye = {p,a, b, qc) -

Table 1 .

Monte Carlo average log-likelihood (LL) and standard deviation (5.d0LL)) for the different
models. Based on the test set value, we conclude that our L-MNL learns the best gen-

eral representation, An MMNL model with true utility specification is given as a reference,
Average of accuracies,

Model Train set Test set Accuracies [X] [
o sdflly IL sdfll) ACCreg  ACGe

Logit] Yy, ) 459 15 -94 & 78 i 032

Logit{ A7) -604 11 -123 6 &7 66 011

DNN(25, Q) -363 21 -112 13 B4 74 019

DNM_L(25. ¥ =Q) -367 1B -108 12 83 75 0.22

-MNLLS X ¢ 429 16 47 5 B0 b 0.20




Experiments

Monte Carlo experiment
INIA-IDEEREDERRNOET I EFHET S

evaluate the models in terms of accuracy in interpretable
parameter estimation

LUF DL AN R ZE ep, ep,/5, ETE TR
define the relative errors e, ep;/p; as:

_|B-B

ep = 5
_ €p, — ©p;
€Bi/B; = 1_9,8

L-MNL[E, BOETIASI1%UTULAALOBRWEIFRET, N5X-
SNEBEEITI SR NICEVWTIRNTOET N ZE RS LEH>TNS
L-MNL greatly outperforms every model in the ability to recover

the true parameter values with a relative error smaller than 1%
away from the true model.

MNL(E, 2FBICEWEER MNL is the second best in accuracy:.

L-MNL(25,X,Q) X = {p,a, b} 9 =1{q,c}
Logit(X;) X ={p,ab,q,c} —
DNN(25,9) — Q={pab,aq,c}
DNN_L(25,X = Q) X ={p,a,b,q,c} 9={p,ab,q,c}
*Logit(Xtrye) Xrye = {p,a, b, qc) —

Table 2

Monte Carlo relative errors for the different models in [%] with & the average relative
error, 5d. its standard deviation and S, . are from Eq. (210

Model Ta, sddeg ) Tg s.d.(eg,) [N s.d.|e_fr a,)
Logit] X)) G4 49 144 + 107 10.8 + 97
Logit{x;) 267 + 62 26,7 + 14,7 155 + 124
DNN_L(25. ¥ =91 &0 £ 324 74 + 54 460 + 166

L-MNL25 X Q) i i . 11.3 103 |




Experiments

Monte Carlo experiment
INIA-IDEEREDERRNOET I EFHET S

evaluate the models in terms of accuracy in

parameter estimation

LUF DL AN R ZE ep, ep,/5, ETE TR
define the relative errors e, ep;/p; as:

eB =
E5is =

DNN_LTCEINIA-FHEE[CKRELRE

€p; — €pB;

interpretable

DNN_L generate high errors in parameter estimates.
T-IRBEE A CpPaDiF K FIEEEES

Data-Driven term is also partially learning linear

dependencies of p or a.

L-MNL(25,X,Q) X = {p,a, b} 9 =1{q,c}
Logit(X;) X ={p,ab,q,c} —
DNN(25,0) — Q={pabqc)
DNN_L(25,X = Q) X ={p,a,b,q,c} 9={p,ab,q,c}
*Logit(Xerye) Xtrue = {p,a, b, qc} —
Table 2

Monte Carlo relative errors for the different models in [%] with & the average relative
error, 5d. its standard deviation and S, . are from Eq. (210

Model Ta, sddeg ) Tg s.d.(eg,) [N S.d.IE“_,-T a,)
Logit] X)) 6.4 49 144 + 107 10.8 + 97
Logit{x;) 267 6.2 26,7 + 14,7 155 + 124
[l Yol o0 =328 1 =57 o I
L-MNL(25, ¥, Q@) 7.1 + 5.1 152 x11.7 11.3 £+ 103




Experiments

Monte Carlo experiment
HEENIA-FEBEDNITA-INFEHNICEL MR TE
We conduct hypothesis testing to determine whether the

estimated parameters are statistically different from the L-MNL(25,X,Q) X = {p, a, b} Q={q,c}
true ones. Logit(X,) .

Null hypothesis Hy: = B ! *=tpabaqc -

Alternative hypothsis H;: 8 # f8 DNN(25,9) — Q={p,a,b,q,c}
L-MNLZBRSIARTOET IV T, BREEBEEBLCEDRELHE DNN_L(25,X = Q) X ={p,ab,q,c} Q={p,a,b,q,c}
STHYICER s

THICRES Logit(Xerue) Xrue = {p,a, b, qc} —
The coefficients are almost always statistically different Table 2
- d

1R I 1JE ENES 1 every jocel S E N Monte Carlo hypothesis testing for the different models, for
DNN_LT(3, T—HEREHIEA /N IA-I B DL R EIE LD Bz and S taken separately and for their ratio, Parameters

£p. Bz are from Eq. (21),

The data-driven term of DNN_L compromises the ratios

Model E of experiments not rejecting Hp
between parameters.
Bpand f,  BolB,
Logit] tiree) 975 a9
Logit{xy) 34 97
DNN_L(25 X =3d) 255 37

L-MNL(25, x. Q) 95 o




Experiments

Choice of neural network architecture e

NNOYAR=EHIYDZ1-0VE, TLE-NSA-FHEBEDRER 14— Test 3
- “~ Train .

The relationship between the size of NN, the number of neurons per layer, £ '? :
and the likelihood and the values of parameter £. 1o | \
n=0~10 Eg 0.8 H4+——t -§
Underfit: the NN has not yet captured all the non-linearities of the £ 08
original utility specification. This can be seen by the higher values in = o !
likelihood.
n=10~100 12
Stable: The model performs almost as well as the true model, 16 T :2"::

depicted by the boundary lines, leading us to believe that the NN RO T

component has successfully learned the non-linearities of the data. .|

eta Value

1.0 ! 3
n > 100 $os BT
Overfit: a drop in train likelihood and an increase in test likelihood. il sl e e 4
0.4 o SES S § [ ———
0.2
10° 10’ 10° 10°

# of Neurons

Fig. 3. Likelihood and values of parameter estimates for an increasing number of neurons in the hidden layer. Error bars show the standard deviation for
100 experiments. Red and Green lines show the standard deviation spread of the true model’s parameter estimation. Best results are obtained with n = [10,
100] .
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Overfit: a drop in train likelihood and an increase in test likelihood. il sl e e 4
0.4 o SES S § [ ———
0.2
10° 10’ 10° 10°

# of Neurons

Fig. 3. Likelihood and values of parameter estimates for an increasing number of neurons in the hidden layer. Error bars show the standard deviation for
100 experiments. Red and Green lines show the standard deviation spread of the true model’s parameter estimation. Best results are obtained with n = [10,
100] .
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_ L-MNL(100,X, Q) X = {p, a, b} Q0 ={q,c}
Impact of strongly correlated variables Logit(ty)
g2 - ogl X = ! ,b, I’ .
OB EHOEE o @04, ¢)
Replace g;, with a new variable g/, that is defined to Logit(X>) X = {p,a,b} —
be correlated to p;,. “LOgit(Xys) ¥ ,
ql{n =5 P+ J1 —s2. in true true = P, @, b, qc} —
bias with high variance due to the correlated variables o

(Logit(X;), L-MNL) . Logit(;)

Logit(X7)
. . . . . c 0.0
bias due to misspecification (Logit(X;), Logit(X5)). L-MNL(25, &, Q)
Logit( A%t rye)
-0.2

s<0.8LFTld, L-MNLIZOYYFETILYERWHEE(EZRFD

For a correlation coefficient below s < 0.8 we can see the § ~04
L-MNL has much better estimates with respect to the true 3 . | .
model than the Logit models. £ I % ‘ '; I; & [; 5 i ;
S e g e M ML N O
8T |- &

= A — PR =p s " - = ! T B ‘ J I [ T3
Z1-IIRYRD-UDANFHENMBRBEOEZ L LFRLT 10 H |8 ||B EE FH | H HI
BUD, sBUVBREN BV ERIFESTFIVITEILENHD 5 L [ “ T) | [l |
Modelers has to carefully check that the variables that 2 o= =
enter as input features in the neural network are not the 1
same or not too strongly correlated with the variables in 1 099 09 oy U 96 04 02 o0

Carrelation coefficient s

the linear utility specification.

Fig. 4. Impact of correlated variables on parameter estimates, where p< X is correlated to q' € O (see Eq. (30)). We see in this case that the L-MNL
correlation bias is smaller than the bias due to underfit for all s < 0.8. For each coefficient, we performed 100 experiments.
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A real case study: The swissmetro dataset (Bierlaire et al., 2001)

SwissmetroT -5ty b, 1998F3F [CATATREINILABT -ITHEBINTNG, RIEER, ERNLHETTE LXBEKEDR
7 LT BSwissmetro(ith FEXTIIE<AIARRY ZT7H#EriR6 LY, RI|RET)CRKRINSG, FILLWEFPIRBFEROZEEN NI O
DIERERELE. (SPRET-TEWNITEIIE D)

The Swissmetro dataset consists of survey data collected in Switzerland during March 1998. The respondents provided

information to analyze the impact of a new innovative transportation mode, represented by the Swissmetro, a revolutionary
maglev underground system. This is SP survey data.

Training set: 7234 observations, Test set: 1802 observations

Table 4 Table 5
Swissmetro benchmark utility function, from Bierlaire et al. (2001) . Variables in the Swissmetro dataset used for modeled component of the utility spec-
Variables Alternative ification.
Car Train Swissmetro Variable  Description
ASC Constant Car-Const SM-Const 1T Door-to-door travel time in [minutes], scaled by 1/100.
T Travel Time B-Time B-Time  B-Time Cost Travel cost in [CHF], scaled by 1/100.
Cost Travel Cost B-Cost B-Cost B-Cost Freq Transportation headway in [minutes]
Freq Frequency B-Freq B-Freg . . - .
CA Annual Pass B-CA B-CA CA Binary variable indicating annual pass holders (=1).
Age Age in classes BAge Age Integeks variable scaled with the traveler's age.
Luggage Pieces of luggage  B-Luggage ) Luggage  Integer variable scaled with amount of luggage during travel.

Seats Airline seating B-Seats Seats Binary variable for special seats configuration in Swissmetro (=1).
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Table 7

Mod eI com pa” sSon Comparison of log-likelihood and parameters estimates for different models with utility specification of Bierlaire et al. (2001). Number of
observations = 7234.

E@%i—“}b(iﬂi%ﬂd)tw, Blerlalre et al (2001) O)MNLOD Model Parameters  Estimates  Std errors  t-stat p-value

+ 7 MNL p2, = 0.28 L(f) = —5764 Lrex (B) = —1433 ASCeyr 1.08 0.162 6.67 0.00
%I:l %t J:I:'EX ASCay 1.05 0.153 6.84 0.00
. . ﬁﬁgg 0.146 0.436 335 0.00
Since the true values of parameter estimates are . : Beos 0695 00423 1642 0.00
. . the result obtained using the MNL model Bireg -0.733 0.1132 647  0.00
unknown, we compare the values obtained with our L- described in Bierlaire et al. (2001) Baa 154 0167 924 000
. . c Prluggage -0.114 0.0488 2338 0.02
MNL to the ones obtained using the MNL model Boeas 0432 0115 376 000
. . . . i -1.34 0.051 -26.18 0.00
described in Bierlaire et al. (2001). i i Plime —\
L-MNL(100, X;, Q) pie = 0.41 £(F) = —4511 Ly (F) = —1181 ASCyr 0.106 0.174 51 0.54
=L, BN =4 313 > * SN ey {‘ = |— ASCam 0.454 0.163 2.80 0.01
yj]ﬁﬁ ax & L_%Iﬁ,% =] @gé’%ébﬂxé t ’ 3'@ ?&tgh IS ‘-_ Bage 0.390 0.045 8.63 0.00
iéé' S ) — \ag s — /L= — |E RN Beos -1.378 0.048 -28.45| 0.00
3 a \ . . .
_,E'ggg;éug FATEOEREHAT SOIKICIODBRE ST I L-MNL model including all variables I By 0.860  0.127 677 | 000
L /—_l_\ & Ba 0214 0.194 1.10 0.27
* ﬁ!uggag‘- 0116 0.0529 2.19 0.03
. . . . B cears 0.104 0.109 0.95 0.34
Adding the representation learning component in the P 1563 0056 \27.9/ o000
IH £ : . L : _ DNN_L{100,&; = Q) p2, = 0.37 £(f) = —4964 Lrou(f) = —1257 ASCey 0.365 0.165 3T 000
utility specification significantly increases the log fre e a2
H H H H H B age 0.087 0.0423 207 0.04
likelihood, suggesting that these variables contain e S
H H H ’ H - -0.639 0.123 -5.20 0.00
information that helps to explain travelers’ choice. i o bt
ﬁ!uggagc 0.186 0.0523 3.52 0.00
Table &
Unused variables in the Swissmetro dataset. Psears 0.233 0.102 229 0.02
Brime -1.146 0.049 -23.32  0.00
Variable Description -
— . _ _ Logit( Xy, ) (all 41 inputs) p2, =033 £(f) = —5451 Lo (F) = —1322  frug -1.062 0.059 18 0.00
Purpose: Integer variable indicating the trip purpose (business. leisure, etc.) B . -0.79 0.118 6.69 0.00
First : Binary variable indicating if first class (=1) or not (=0) r" ~
Ticket: Integer variable indicating the ticket type (one-way, half-day. etc.) Prime 1326 0.053 25.02 0.00
Who: Integer variable indicating who is paying the ticket (self, employer. etc.)
Male; Binary variable indicating the traveler's gender (0 = female, 1 = male) N i ¥ Va2 — Ay — — Ay — — i g K
Income;  Integer variable indicating the traveler's income per year. L-MNL(100, 2, Q2) fiex =044 L(P) = ~3895 Liex (F) = ~1108 gm‘”r _ag;; gg?ég _3123 ggg
Origin: Integer variable indicating the canton in which the travel begins. Jreq
Dest; Integer variable indicating the canton in which the travel ends, Brime -1.769 0.0389 -45.4 0.00
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Table 7

Mod eI com pa” sSon Comparison of log-likelihood and parameters estimates for different models with utility specification of Bierlaire et al. (2001). Number of
observations = 7234.

D N N_L(\‘]_OO’ “X‘l :_Q) ‘j:\ F"ﬁ 7':,_ 0) A jj %é‘\?\/z%&& FEﬁ ‘: ’I 3'(:_" 'I Model : : Parameters  Estimates  Std errors  t-stat  p-value
@*E Eah\%éh\\ /\7X_9®;ﬁ,%'\'|‘$§giDTL\EL\. MNL p2, = 0.28 £(fl) = —5764 Lreq (f) = —1433 i;gsz 1.08 0.162 B.67 0.00

1.05 0.153 6.84 0.00

. Buge 0.146 0.436 335 0.00

DNN_L(100,X; = Q) has one-to-one correlation among free 0690042 I6&2 000
. . . .o . 'freq . . —0 .

variables in both sets and does not loose significance in Boa 154 0067 924 000

. Bruggage -0.114 0.0488 -2338  0.02

Its parameters. Bseas 0432 0115 376 0.00

Brime -1.34 0.051 -26.18 0.00

L-M N LIZ, EOZE LB E'ﬂE—}Eﬁ ARLT=YICHEBELTLAD L-MNL(100, X1, Q1) oy = 0.41 £(B) = —4511 Lo (B) = 1181 ASCos 0106 0174 061 034
NNAEBIBILT, HENTA-TDHEBMEERSE fw 03 00 sm oo

Beos -1.378 0.048 -28.45  0.00

. . . . Y o - i i i fre -0.860 0.127 -6.77 0.00

The coefficients in L-MNL have lost their significance | L-MNL model including all variables | e oseo o e 00
due to the neural network’s ability to learn better which S ONE WM o
variables and interactions are most correlated to the Buime 1563 005 2797 000
data DNN_L(100,X; = Q) pZ, = 0.37 £(f) = —4964 Lrex(B) = —1257 ASCeq 0.365 0.165 61 0.00
’ ASCoy 0.549 0.162 222 0.03

ﬁﬁ_g-e 0.087 0.0423 207 0.04

Beost -0.897 0.046 -19.46 0.00

DNN—L ﬁ‘..-ﬂ-‘. -0.639 0.123 -5.20 0.00

Boa 1.40 0.172 8.15 0.10

ﬁ!uggag,_« 0.186 0.0523 3.52 0.00

B cears 0.233 0.102 2379 0.02

Brime -1.146 0.049 -23.3 0.00

Logit{Xy,.,) (all 41 inputs) p2, = 0.33 £(f) = —5451 Loee (F) = 1322 frox -1.062 0.059 7 o000

,1‘3‘,,.‘.,.‘, -0.79 0.118 6.69 0.00

Brime -1.326 0.053 2502  0.00

L-MNL(100, Yo, ©4) ply = 0.44 L(F) = —3895 Lo (f) = —1108 Beox -1.671 0.0523 31.94  0.00

ﬁ,,.m -0.865 0.0765 -11.30 0.00

Brime -1.769 0.0389 454 0.0
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Table 7
MOd el com pan son Comparison of log-likelihood and parameters estimates for different models with utility specification of Bierlaire et al. (2001). Number of

observations = 7234,
TTOMNLONSA-FDE &

‘i {I 7 ‘/9\— 7 ,r \y I\ (: J: 6 E_I- ﬁE Il‘i Model Parameters  Estimates  Std errors  f-stat p-value

MNL pi, =028 Ccﬁ] = —5764 Crm[fhz —1433 ASCoqr 1.08 0.162 6.67 0.00

The significance of the same parameters in the initial o 0he tme s oo
MNL model can originate from a bias due to the [ Paus 0605 00423 1642 000
; ; the initial MNL model I Bireq -0.733 0.1132 647 000
model’'s underfit. o 154 017 924 000
ﬂ!uggage -0.114 0.0488 -2.338 0.02

% ORPEBNEBINTNBED, EFIAREL, T4 ST
DBTﬁEE E%&tgﬁﬁlﬁmﬁﬁo);‘:ﬁ Bagﬁ(j)@_§_<7§DTL\5 L-MNL(100, X}, ;) pis = 0.41 .Ccfﬂ): —4511 Ermtfﬂ)z —1181 ASCrqr 0.106 0.174 0.61 0.54

ASCam 0.454 0.163 2.80 0.01

. . . . . Buage 0.390 0.045 8.63 0.00
With many explanatory variables being omitted in the Beus 1378 o043 2845 000
QS8 H H M . -0.860 0.127 -6.77 0.00
initial MNL model, it is worth noting that the model is P N
I 1 1 I Brugraze 0.116 0.0529 2.19 0.03

more likely to be subject to endogeneity, ie, Bl 0116 00529 219 003
correlation among the dependent variables and the P 1563 0056 27.97 000
error term. DNN_L(100,X; = Q) pZ, = 0.37 £(f) = —4964 Lrex(B) = —1257 ASCeq 0.365 0.165 361 0.00
ASCam 0.549 0.162 222 0.03

Bage 0.087 0.0423 207 0.04

B cost -0.897 0.046 -19.46 0.00

Bireq -0.639 0.123 -5.20 0.00

Boa 1.40 0,172 8.15 0.10

Bluggage 0.186 0.0523 3.52 0.00

Bseas 0233 0.102 2.29 0.02

Brime -1.146 0.049 -23.32  0.00

Logit{Xy,.,) (all 41 inputs) p2, = 0.33 £(f) = —5451 Loee (F) = 1322 frox -1.062 0.059 18 0.00

ﬂ_,,.‘.q. -0.79 0.118 6.69 0.00

Brime -1.326 0.053 2502  0.00

L-MNL(100, 3, @4) ple = 0.44 £<fﬂ) = —3805 .C,‘-;,tfﬂ] =-—1108 Beoat -1.671 0.0523 -31.94 0.00

,H,,.“. -0.865 0.0765 -11.30 0.00

Brime -1.769 0.0389 454 0.0
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Model comparison
-RESCLZEOIYNETI P Xgum = X2 U @,
L-MNLET IV E DRI BLEDKERER, OT-FtY

MY, ETIAERREDIRZ 3L R G E MR ER
BB EEAEERRICEATNRI L ERE

The big difference in final likelihoods with our L-MNL
models further demonstrate that this dataset indeed
contains complex functions and interactions among
its variables which may be difficult to capture by the
modeler.

Table 7
Comparison of log-likelihood and parameters estimates for different models with utility specification of Bierlaire et al. (2001). Number of
observations = 7234,
Model Parameters  Estimates  Std errors  t-stat p-value
MNL pi, =028 Ecﬁ] = —5764 Crm[fhz —1433 ASCrqr 1.08 0.162 6.67 0.00
ASCay 1.05 0.153 6.84 0.00
Bage 0.146 0.436 335 0.00
Breost -0.695 0.0423 -16.42  0.00
Fireq -0.733 0.1132 -6.47 0.00
Ba 1.54 0.167 9.24 0.00
Bruggage -0.114 0.0488 -2.338 002
Bears 0.432 0.115 3.76 0.00
vime -1.34 0.051 -26.18  0.00
L-MNL(100, X, 1) ply = 041 £(B) = —4511 L (B) = —1181 ASCear 0.106 0.174 0.61 0.54
ASCam 0.454 0.163 2.80 0.01
Page 0.390 0.045 8.63 0.00
Breost -1.378 0.048 -28.45  0.00
I L-MNL model including all variables I Bireq -0.860 0.127 677 000
Ba 0.214 0.194 1.10 0.27
Biuggage 0116 0.0529 2.19 0.03
seats 0.104 0.109 0.95 0.34
Brime -1.563 0.056 -27.97  0.00
DNN_L(100,X; = Q) pZ, = 0.37 £(f) = —4964 Lrex(B) = —1257 ASCrqr 0.365 0.165 3.61 0.00
ASCam 0.549 0.162 222 0.03
Bage 0.087 0.0423 207 0.04
B cost -0.897 0.046 -19.46 0.00
Bireq -0.639 0.123 -5.20 0.00
Boa 1.40 0,172 8.15 0.10
Bluggage 0.186 0.0523 3.52 0.00
sears 0.233 0.102 2.29 0.02
rime -1.146 0.049 -23.32  0.00
Logit{Xy,.,) (all 41 inputs) p2, = 0.33 £(f) = —5451 Loee (F) = 1322 frox -1.062 0.059 18 0.00
ﬂ_,,.‘.q. -0.79 0.118 6.69 0.00
I a dummy coded Multinomial Logit I Prime -1.326 0.053 2302 000
L-MNL{100, X5, Qs) piy = 0.44 £(B) = —3895 £y (B) = —1108 B oot -1.671 0.0523 23194 0.00
,H_,,.“. -0.865 0.0765 -11.30 0.00
. . T -1.769 0.0389 -45.4 0.00
L-MNL model including | P
only time, cost and frequency in X, I




Experiments

Model comparison
ZETIOVOTEVOFDLLE: Comparison of VOT and VOF for the different models
L-MNL& Logit(X0 ) DXL EDEL, MNLETILATVY-J4vMMIEEL, BEBLLROARA—EEZ R

The difference in log-likelihood values between the L-MNL and the Logit(X;) suggests that the MNL model suffers from
underfitting that leads to significant ratio discrepancy.

Ty MIBWIERRFZEN'$D  Only under strong non-linearities in the dataset

EELMEMUEDCMFIEL, RENG®ESICD
n_ca L-MNLO‘)JZI_’R—_;.“_S(: \FI")‘ k‘;\_CL\5 :O)'ﬂﬁﬂ:’ﬂ (1, P:ra;m-er ratio comparison.
AR EINNE, 4 DFHLVERTE

5'“}[/‘:5‘:’3(, J:I:/_._fitjtF;:b“otUMt{lElCE%Zté I':1|:-?|Efl _ EE:_I_]:E of Time ‘;‘e::le of Frequency Tii;h:ug- Likelihood T-:'j. F.ng-Likelihu:-u:n:I
AN LEEEEE:E;_} 0.80 134 5451 : ujj
Both added DCM methods, that their ratio values LDT.:HL-Ll:|I| gsg Htg :Eﬁ Hm
move towards those of L-MNL as their likelihood L-MNL{2z)  0.594 1.93 —3895 —1108
increases. This trend implies a better CNL(x;) 0.59 1.52 5711 -1415

TPM( X; ) 072 159 4752 ~1350

specification in their utility would allow them to
reach even more similar values in ratios and
likelihood with our new choice model.
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3 , OVERFIT
Model comparison L va ‘*& |
S | -
VOTEVOFDRELIEND, 10~20021-0Y%#FD21-5 3 i
VxybI-JTHELNS w0 | .\
- —— | rain [
Stable ratios for VOT and VOF are obtained for a neural 204 l
network having from 10 to 200 neurons. - :
-1 e ———
MNLEF DT V5 =T1vk g - = e :\‘\
=5 =2
We see the MNL ratios for n = 0 neuron highlights the = —— Bime :
underfit of the MNL model. @ =3 —— Poost |
W — ~ R — N = vfre |
A-N\=-J1yhE, 500Z1-0YN0CEAEN, TAMEEEEE® -4 : :
EINZL |
1
An overfit effect is observed starting from 500 neurons, o 2.5 S -:,/8: :/
where the test likelihood no longer improves. 7 20 ' e |
_<>_3 1.5 / :
22 N — i —
5 I
10° 10! 102 ! 103

# of Neurons

Fig. 5. Scan of Likelihood and Beta values over number of neurons n in the densely connected layer for L-MNL(100,x>, Qz). For n € [10, 200] we have
VOT ~ 1 and VOF = 1.9. Over n = 200, we have signs of overfit.
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Revealed preference study: Optima dataset
RELET-YDY1ADFHIKIICKY, RBZBENKYRELGT- A& DT
We investigate a case much more difficult for representa- tion learning due to the size limitation of gathered data.

Optima dataset(d, 2009FA'52010F [CATTAIATIRESNI/NRELGHETHY, EEEE, BHFROBRENIT-VIOWNT,
BENCHDBIEFEPER, R BEMLL, LERBHREZDZF

The project named Optima is a small survey collected in Switzerland between 2009 and 2010 where respondents filled up
extensive information in the topic of mode choice, including time and cost of performed trips, socio-economic characteristics.

Benchmark models
L-MNL model
A well-specified base multinomial logit model (Fernandez-Antolin et al., 2016)
The Integrated Choice and Latent Variable (ICLV) model (Fernandez-Antolin et al., 2016)
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Models description

The MNL specification from Fernandez-Antolin et al.
(2016) can be seen in Table 10.
Compare the following models:

L-MNL: X; is the same as the MNL. Q; includes
variables in Table 11.

L-MNL2: X, = {time, cost,distance}. Q, includes
other variables.

NN: X = Q. 100 neurons per layer.
NN2: X = Q. 30 neurons per layer.

Training set: 1089 answers, Test set: 287 answers
Too small dataset for NN. Difficult to avoid overfitting

Added a 30% dropout layer and an L2 regularizer of
weight A = 0.5.

SocioProfCat;

Table 10
Base mode] spedification from Ferndndez-Antolin et al. (2016)
Variables Alternative
Public Transportation Car Slow modes

ASC Constamnt PT-Const CAR-Const

TT Travel Time [min] B-Time-FT B-Time-CAR

MCost Marginal Cost B-MCost-PT B-MCost-CAR

Distance Trip distance [km] B-Dist

Work Work related Trip BE-Work

French French Speaking area B-French

Student Occupation is student  B-5Student

Urban Urban area E-Urban

MNbChild Mumber of Children B-NbChild

MNECar Mumber of Cars B-NbCar

MNbEicy Mumber of Bicycles B-NbBicy

Table 11
Added variables for representation learning term in Optima dataset. All variables gave -1 for missing values,

Variable Description
Age: Age of the respondent (in years)
HouseType : 1 is individual house {or terraced house), 2 is apartment, 3 is independent room
Gender; 1 is man, 2 is woman, -1 for missing value,
Education; Highest education achieved®, Categories from 1 to B,
Famil5itu; Family situation®. Categories from 1 to 7,
Scaledincome: Integer variable indicating the traveler’s income per year,
OwnHouse: Do you own the place where you are living? 1 is yes. 2 is no
MotherTongue: 1 for german or swiss german, 2 for fremch, 3 for other.

Socio-professional® categories from 1 to 8.

+ More details ar htrps:

bingeme epfl.ch/dara hrmil,
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Expert modeling as a regularizer
AIIRD5DDET IV DERE

The performances of the five models described above Il
Run 100 times for every model 5 O]
O BIEALEFEE Y1) 80 epochsdkl, [F5DE(FIH] = e ! it ik
HEOZLICL3 2 o504
The observed variation comes from the change in E —— Train NLL
starting values, which ultimately brings to a slightly = Test NLL
different optimum given the strong regularizers and 59-45‘
fixed number of training cycles 80 epochs. @
£ 0.40-
0.35 - T T T T T
1 N a0
N\ R Y W o

Fig. 6. Performance of multiple models on a small revealed preference dataset (Optima) for 100 minimization iterations. The first two models have expert
modeling of the utility specification and generalize well. The last three have small or no modeling of the utility and show clear signs of overfitting as well
as high variance in performance results.
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Expert modeling as a regularizer
AIIRD5DDET IV DERE

The performances of the five models described above Il
Swissmetro dataset ($XFBBAYAFE R 5 557
As opposed to the case seen in Swissmetro: = e s it it et
L-MNL: O, L-MNL2: X 2 0.50-
NN: A, NN2: A 3 —— Train NLL
5 Test NLL
S 0.45 -
Z
2 0.40-
0.35 1 : | : | |
\h\l“\’ g kh\,:{\.- \—Rﬁr\\,l N\ e

Fig. 6. Performance of multiple models on a small revealed preference dataset (Optima) for 100 minimization iterations. The first two models have expert
modeling of the utility specification and generalize well. The last three have small or no modeling of the utility and show clear signs of overfitting as well
as high variance in performance results.
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Benchmarking with ICLV
BIEZE M CarLovingZBILEICLVET ILEDLEEE  Compare an ICLV model, where the latent variable CarLoving is added

Two Likert indicators (Likert, 1932) and the following specifications
I, : It is difficult to take the public transport when | travel with my children.
I, : With my car | can go wherever and whenever.
tear - I; = a; + A; - Carloving - t ., + w;
w;~N (0, 0;) is the random term, a;, A;, g; are parameters to be estimated
CarLoving = g + W

Neqr @and o are the estimated parameters and w~N (0, o) is the random term

Table 12

Models accuracy on training and testing sets of Optima.
Model Logit(X;) L-MNL(X;,9,) NN (X U Q) ICLV(X;)
Accuracy Train [%] 76.8 80.4 86.1 80.0

Accuracy Test [%] 76.7 79.2 81.3 77.7
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Benchmarking with ICLV
BIEZE M CarLovingZBILEICLVET ILEDLEEE  Compare an ICLV model, where the latent variable CarLoving is added

Two Likert indicators (Likert, 1932) and the following specifications
I, : It is difficult to take the public transport when | travel with my children.
I, : With my car | can go wherever and whenever.
tear - I; = a; + A; - Carloving - t 4y + w;
w;~N (0, 0;) is the random term, a;, A;, g; are parameters to be estimated
CarLoving = N¢gr + @

Neqr @and o are the estimated parameters and w~N (0, o) is the random term

Table 12

Models accuracy on training and testing sets of Optima.
Model Logit(X;) L-MNL(X;,9,) NN (X U Q) ICLV(X;)
Accuracy Train [%] 76.8 80.4 86.1 80.0

Accuracy Test [%] 76.7 79.2 81.3 77.7




Experiments

Benchmarking with ICLV

BIEZE M CarLovingZBILEICLVET ILEDLEEE  Compare an ICLV model, where the latent variable CarLoving is added
ICLVETIVE, RIUFHHBZERAZESEALEMNLEY RWER
The ICLV model performs better than MNL while having the same initial feature space.
BEEZHV, JVEMGESEAERLEMINGE, JEWBENEARFFTES
A stronger increase in accuracy could be expected with added latent variables or more complex structural equations.

Table 12

Models accuracy on training and testing sets of Optima.
Model Logit(X;) L-MNL(X;,9,) NN (X U Q) ICLV(X;)
Accuracy Train [%] 76.8 80.4 86.1 80.0

Accuracy Test [%] 76.7 79.2 81.3 77.7




Experiments

Benchmarking with ICLV

BIEZE M CarLovingZBILEICLVET ILEDLEEE  Compare an ICLV model, where the latent variable CarLoving is added
NNEL-MNL&EYER WEREZRT N, training setlCA—/\-J 1y b
The NN performs better than the L-MNL on average while slightly overfitting the training set.
FRIRATRER/\OAX-FEEFT, MREDESDENKRZVDT, fine-tuninghKZE
The obtained model does not contain straightforward interpretable parameters, has higher variance in performance, and
required more efforts in fine-tuning for optimal performance.

RERCEIRET VT, SECETIMEENL-MNLEICLVET W' EE
In the DCM sense, the most useful models would be L-MNL with the full expert specification and the ICLV model.

Table 12

Models accuracy on training and testing sets of Optima.
Model Logit(X;) L-MNL(X;,9,) NN (X U Q) ICLV(X;)
Accuracy Train [%] 76.8 80.4 86.1 80.0

Accuracy Test [%] 76.7 79.2 81.3 77.7
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Future directions

The new possibility to investigate many more types of datasets for discrete choice modeling
FLWA N ZRENGIRENGREBRIRET VO E R HFIT L ERE
Propose the coexistence of these new inputs with standard discrete choice modeling variables
KIRFEE, ERES, BER BRINT-ILEHLDIERDANICKIETES
Representation learning methods exist for all types of inputs, including continuous signals, images, time series, and more.
BEBGRIRET VD AN EHRDIBZL T 3N TEEDTEGEWD

Other discrete choice models such as more advanced GEV models, Mixed Logit or Latent Class models can also benefit
from an added data-driven term while keeping high degree of interpretability

H—SNEIL-LI-JI1514T3V(CHEE
Integrating them in a unified framework/library

MNL: NNZFIFBLTT - BXENIEAESEZE  Using NN, implement data-driven term

NL: SBEZEIMTSVICIEHDHATLIBREBDEL(ZLD Thanks to the implementation of multiple custom loss layers in
a deep learning library, we have implemented its first nested generalization



Future directions

The proposed architecture of our model may also help in the task of modeling the knowledge-driven term of the utility
specification via feature selection

T-YERENEIAEFE LN EZERELT, MHEEDREICKRILTS
Understanding what a data-driven term has learned, make use of modeling knowledge-driven term

The structure and role of the representation term in the utility function
MAZEDERDEEZFOIET, BIRINEZEANEEGYNZENZNDRYRTI-JICEL, MRICERDHRIEHIAHEIERTES

One could have multiple terms per utility, such that each chosen input set Q;, belonging to their own respective network, would
create a meaningful embedding in the utility.

Tackle small datasets
KAEDT-FTIFve/ NEBERT -y MBERALESS, —RINEEBFZEF EOERMLY-ILELTEEET 2RI EEMEN H D

Our architecture may perform as a regularization tool for common deep learning methods when applied to small datasets
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Conclusion

BERCERET VO RAARICRREMEMEREL, FARERAT-INoBEEBNICRVIALREFKR TS
— XA CRERGHT LV E R EAZE A

We introduced a novel general and flexible theoretical framework that integrates a representation
learning technique into the utility specification of a discrete choice model to automatically discover
good utility specification from available data.

FRIRATREM AR LAN'D, T-IREIEICKYET LOEAEMNE FRIEEZ KIRICSE

While keeping interpretability, data-driven term may account for many forms of misspecifications and
greatly improves the overall predictability of the model.

L-MNLOE X1k, SLUOBEMMEZERE
Formulating L-MNL and demonstrating the effectiveness of our framework
FRIMREENIA-FHEDBEEDOTAICEVNT, EROFRETIPEEGFO/NATVYRETINEEETS

Our models outperformed the traditional choice models and existing hybrid models, both in terms
of predictive performance and accuracy in parameter estimation.



FIT 1%

MEOERIRTT M E OB E M - BHYAIT LR A TES
Oy FELEIRER R & softmaxBEZ DA R U
MNLZCNNTEETIEN T, HEURIRTETIORLHEE LN FE DIBARE/IMEARMETHIEN RZTEN O
ADFETIIFGEECETHVE DM P T (CFHR LT, BEEXELTVWAIENEREL
BE, ZHECHBTEEVAOREIERIELRLETRIEINDS
L-MNLCRERENBLNOT, F-IRBECRYAA TEEERELTLNZ0REE
BUBEERDOENDNERY D ENZLKRETH
A1 MERR LA S LIEHONT=E RS
SHEODREET, BEERTTINOANDZHRIENTCEZOIHRONEEZD
BORICRZATVWARED(CRMDEELARTEMEZEHELTAATEILT, THEE ELKKRIIBTCEHLD
BEEESGRICEARITEIZEANEVIEEICEILHATESZS
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