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Summary

Main Challenge

1. The need for informative features and effective
regularization to impose structure on the cost.

2. The difficulty of learning the cost function under unknown
dynamics for high-dimensional continuous systems.

Contribution e = w
1. This paper presents an algorithm capable of learning arbitrary ;“n“rﬁz!i:”i’

nonlinear cost functions, such as neural networks, without
meticulous feature engineering.

2. This paper formulates an efficient sample-based
approximation for MaxEnt 10C.

2D Navigation
n

Validation

« Simulation tasks
 Real-world robotic manipulation problems
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0. About this paper

[CML International Conference on Machine Learning A 2 languages
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From Wikipedia, the free encyclopedia

The International Conference on Machine Learning (ICML) is the leading Part of a series on

international academic conference in machine learning. Along with NeurlPS Machine Iearning
and ICLR, it is one of the three primary conferences of high impact in and data mining
machine learning and artificial intelligence research.!!! It is supported by the Paradigms [show]
International Machine Learning Society (IMLS). Precise dates vary year to year, Problems e
but paper submissions are generally due at the end of January, and the

Supervised learning [show]

conference is generally held the following July. The first ICML was held 1980
in Pittsburgh.[2113]
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1. Introduction

* Reinforcement Learning Challenges

+ Difficult to define a cost function that encodes the correct task and can be optimized
effectively.

« Cost shaping often used to solve complex real-world problems (Ng et al., 1999).

Inverse Optimal Control (I0C)

« [0C and inverse reinforcement learning (IRL) learn a cost function directly from expert
demonstrations (Ng et al., 2000; Abbeel & Ng, 2004; Ziebart et al., 2008).

+ Challenges: Many costs induce the same behavior, and solving the forward problem
(finding an optimal policy) in the inner loop of iterative cost optimization.
Proposed Approach
+ Use expressive, nonlinear function approximators like neural networks to represent the

Figure 1. Right: Guided cost learning uses policy optimization

* Reduces the engineering burden and allows learning complex cost functions without hand- to adaptively sample tajctoriesfor estimating the I0C partiton
d e S|g n ed fe atU res. fu:ctiroa:. -Bonom left: PR2 learning to gently place a dish in a
Advantages
« Can handle unknown dynamics and high-dimensional systems.
« Combines policy learning and cost learning, making it practical and efficient.
» Achieves good global costs even for complex tasks.

Key Contributions
» Simultaneous policy and cost learning from demonstrations.

» Guided cost learning algorithm based on policy optimization over a good region of the
space.

* Outperforms prior methods in simulated benchmarks and real-world tasks without
manually designed cost functions.
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2. Related Work
Issue #1 in IOC (or IRL)

The set of demonstrations is not necessarily optimal

« Maximum margin formulations
* Probabilistic models

2024/7/19 6



2. Related Work
Issue #1 in IOC (or IRL)

The set of demonstrations is not necessarily optimal

* Probabilistic models
 Maximum entropy IOC model

There is still a great deal of ambiguity...
1. More detailed features
2. More powerful regularization
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2. Related Work
Issue #2 in IOC (or IRL)

Necessity of solving a variant of the forward control problem

Solving the forward control

problem
* Requires knowledge of the system
dynamics to solve the problem
« This paper’s method is based on the
principle of maximum entropy which
can handle unknown dynamics

—»
M —F)
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2. Related Work
Issue #2 in IOC (or IRL)

Necessity of solving a variant of the forward control problem

Solving the forward control Comparing with other
problem sample base methods...
* Requires knowledge of the system « Adapts the sampling distribution using
dynamics to solve the problem policy optimization
* This paper’'s method is based on the « This adaptation is crucial for obtaining
principle of maximum entropy which good results

can handle unknown dynamics
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2. Related Work

Summary

This paper’'s method combines key features for effective algorithms

Manages high-dimensional, Learns complex,

complex systems expressive cost functions
Applicable to real torque-controlled robotic arms Utilizes neural networks

Eliminates the need for hand- Handles unknown dynamics
engineering of cost features Crucial for real-world robotic tasks
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3. Preliminaries and Overview
Probabilistic Max-Ent I0OC

(Ziebart et al., 2008)
« Assumes that experts act probabilistically
and nearly optimally with respect to an

unknown cost function

- Assumes that the expert samples the p(0) Ty = {(Xg, Uy, -, Xp, U}
demonstrated trajectory {r;} from
distribution .

p(7) = EGXP(—CQ (T))

e T={X{,Uq,.., X7, U}

Trajectory sample of expert demonstrations
* —co(1) = Nrco(Xpup)

Unknown cost function characterized by parameters 6
* X U

State/Input at time ¢
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3. Preliminaries and Overview

Probabilistic Max-Ent I0OC Challenges and Solutions
(Ziebart et al., 2008) » Calculating the partition function Z is
 Assumes that experts act probabilistically difficult
and nearly optlmally with respect to an « Ziebart (2008) first calculated Z exactly using
unknown cost function dynamic programming
« Assumes that the expert samples the - Laplace Approximation (Levine & Koltun, 2012)
demonstrated trajectory {z;} from « Value Function Approximation (Huang & Kitani,
distribution 2014)

1 . : .
p(T) = Eexp(_ce (T)) Sampling (Boularias et al., 2011)

e T={X{,Uq,.., X7, U}

Trajectory sample of expert demonstrations Sig n ificance
) _CS (E) =~ ZtCth(xt;,“t) o torived b g CanperformIOC even with unknown system
nknown cost function characterized by parameters dynamics!
* Xp, U Crucial for robotics interacting with objects of unknown physical

State/Input at time t properties
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4. Guided Cost Learning

2024/7/20

) B
human
demonstrations
run policy q, D
on robot Dicat S
initial :
distribution g,
Manual
6@ optimize cost Cg
optimization step o
6 6 « argmin Lioc
f
&Guided Cost Learning Y

Figure 1. Right: Guided cost learning uses policy optimization

to adaptively sample trajectories for estimating the IOC partition

function. Bottom left: PR2 learning to gently place a dish in a
plate rack.



4-1. Sample-Based Approach to Maximum Entropy |OC

Sample-Based Approach to Max-Ent IOC

» The partition function Z = [ exp(cg (7)) dz is

estimated using a background distribution g(7)
* Prior methods: [ nameEn

demonstrations

A linear representation for the cost function to simplify the cost
learning problem (e.g., Boularias et al., 2011) [

» This paper:
Generalizes and uses a non-linear parameterized cost function

* The negative Ic>19-likelihood of p(7) is given by
Lioc(8) = N Z co(7;) +logZ

run policy q,

on robot ,

policy
optimization step

initial
distribution q,

optimize cost Cg

6 « argmin Lioc
2]

Ti€Ddemo

kGuided Cost Learning 7,
Lioc(6
10¢(0) ox (—C (T)) Figure 1. Right: Guided cost learning uses policy optimization
~ l Z co(1;) + lo l Z p O\ to adaptively sample trajectories for estimating the IOC partition
N oL 5 M q(Tj) function. Bottom left: PR2 learning to gently place a dish in a
Ti€Ddemo Tj€Dsamp

plate rack.
* Dyemo: Set of N demonstrated trajectories

* Dsamp: Set of M trajectories sampled from the
background distribution

« q: Often manually chosen as the demonstration
distribution or a uniform distribution
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4-1. Sample-Based Approach to Maximum Entropy |OC

Sample-Based Approach to Max-Ent IOC

- The partition function Z = feXp(Cg (T)) drt is » To find the gradier(1t of thi)s objective function with respect to
) _ _ S ) _ _exp —cg(7)) _
estimated using a background distribution q(t) &y Qe vy = — TS @ e 2 = 5y

* Prior methods:

A linear representation for the cost function to simplify the cost
learning problem (e.g., Boularias et al., 2011)

 The gradient is

- This paper: dLioc _ 1 Z dcg 0 e~ Z dcg 0 @)
* Generalizes and uses a non-linear parameterized cost function do N Jc ' o J
« The negative Ic>19-likelihood of p(7) is given by Fi=demo T’ Samp
» If the cost function is approximated by a neural network:
Lioc(0) = N Z cg(7;) +logZ L PP y
€D gemo . Backpropagate — for t; € Dgemeo
Lioc(0)
« Backpropagate ——for T; €D

S ey Y 2o ot 3 € o
~ N Co\T; OF |2/ ,

N Ti€Ddemo M Tj€Dsamp g (T])

* Dyemo: Set of N demonstrated trajectories

* Dsamp: Set of M trajectories sampled from the
background distribution

« q: Often manually chosen as the demonstration
distribution or a uniform distribution
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4-2. Adaptive Sampling via Policy Optimization

» Choosing the Background Sample Distribution g (t)for Estimating £;,. Is Crucial for
the Success of Sample-Based I0C Algorithms

» The optimal importance sampling distribution to estimate the partition function
7 = fexp(ce(r)) dtis q(1) « |exp(—ce(r))| = exp(—cy(1))

» However, designing a single background distribution g(7) is difficult
when the cost function cg is unknown

 Instead, adaptively improving g () using the current cost function cg (1)
generates more samples in specific regions of the trajectory space

* To Achieve This

» 10C Optimization

* Find the cost function that maximizes the likelihood of the demonstrated
trajectories

» Policy Optimization

» Improve the trajectory background distribution q(t) with respect to the
current cost

» Alternate between these two optimizations

» Since policy optimization can handle unknown system dynamics, adopt
the method by Levine & Abbeel (2014), which iteratively fits time-varying
linear dynamics using samples from the system dynamics.

2024/1/20

Algorithm 1 Guided cost learning

—

o0~

AR

: Initialize g (7) as either a random initial controller or from
demonstrations
for iteration? = 1to I do

Generate samples D from gk (7)

Append samples: Dsanp ¢ Dsame U Dya

se Dgmp 10 update cost ¢y using Algorithm 2

Update g (7) using Dy, and the method from (Levine &

Abbeel, 2014) to obtain g, 1 (7)
end for
return optimized cost parameters ¢ and trajectory distribu-
tion ¢(7)

human
demonstrations

initial
distribution q,,

run policy q
on robot ’

policy
optimization step

optimize cost Cg

6 « argmin Ljo(
6

- 4

Figure 1. Right: Guided cost learning uses policy optimization
to adaptively sample trajectories for estimating the IOC partition
function. Bottom left: PR2 learning to gently place a dish in a
plate rack.




4-3. Cost Optimization and Importance Weights
Optimizing the IOC Objective

Algorithm 1 Guided cost learning

F u n cti o n 1: (Ijr:l:z;lr:;er :11(,; (E;S) as either a random initial controller or from s c::,‘,"(; g[,j d,em'“)‘w*
. ] ) o 2: for iteration i = 1 to I do & *# '
* The 10C objective function can be optimized 3: Generate samples D from gx (1), =¥
using standard nonlinear optimization 5 | |
methods and the gradient 2210¢ 7 e 200 0o ()
d@ 8: return c;pumlzed cost parameters 6 and trajectory distribu-
tion g(7

* For neural networks, stochastic gradient
methods can be used

Algorithm 2 Nonlinear IOC with stochastic gradients
: for iteration k = 1 to K do y
:  Sample demonstration batch Dgemo C Diemo

1

2

3:  Sample background batch Dsamp C Dsamp

4. Append demonstration batch to background batch:

* It is straightforward if the objective function is
factored over samples, but the partition
function here is not

* In this paper, the objective function can be Deamp ¢ Ditemo U Diamp
optimized by sampling subsets of samples 5:  Estimate “ (0) using Duemo and Dyamp
from demonstrations and the background 6:  Update parameters 0 using gradient “Zioc (0)
distribution in each iteration R sireic
: return optimized cost parameters ¢
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~ 4-3. Cost Optimization and Importance Weights

Optimizing the IOC Objective Importance Sampling for Partition
Function Function Estimation
e The |OC Objective function can be Optimized . ]Icumnpcciir(t)?]nce sampling is required for estimating the partition
USing standard nonlinear Od%timization  Previous works (Kalakrishnan et al., 2013; Aghasadeghi & Bretl,
methods and the gradient = % b e R R R S R L RIS
e For neural networks, stochastic gradient « To evaluate importance weights, construct a composite distribution

as samples are drawn from multiple distributions

methods can be used * When samples are drawn from k distribution q, (7), ..., g, (1), a

« |t is straightforward if the objective function is consistent estimate of the expectation of function f(z) under a
factored over samples, but the partition E[f ()] ~ iz L ()
function here is not M L% ai(%))

* In this paper, the objective function can be e el e WEstiEes wEeit s

optimized by sampling subsets of samples
from demonstrations and the background
distribution in each iteration

2[5

% Z ZjeXP(—Ce(Tj))]

TjEDsamp

Objective Function:

1
Loc@ =5 ) co(z)+log

Ti€Dgemo
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4-4. Learning Costs and Controllers

- S Policy Optimization
Algorlth m Capabl I Itles « Learned cost function can optimize policies for new task instances

 Produces both a cost function ¢y (x;,u;) and a ‘I’V“hﬁ: adc_“tio?a' EOSt 'ef_ming- o learming with [0C
Controller q(utlxt)- N challenging taskKs, continuous policy learning wi

i . . . outperforms using a single learned cost.
« Can execute desired behaviors directly using the
generated controller.

Hypothesis
Contrast with Previous Methods - Training on new task instances provides better cost

function and reduces overfitting.
« Demonstrations cover limited task variations; new
samples improve task execution understanding.

» Unlike many previous IOC and IRL methods, our approach
simultaneously learns a cost and optimizes the policy for new task
instances without demonstrations.

Advantages
* Uses knowledge that demonstrations are near-optimal under some
unknown cost function.
« Similar to recent IOC work by direct loss minimization (Doerr et al.,
2015).

Changes positions
of a cup
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Y. Representation and Regularization

Proposed Regularization Methods:

 Expressiveness

Affine cost functions lack sufficient
expressiveness (Section 6.2).

Neural network parameterizations are useful for
learning visual representations from raw image
pixels

Uses an unsupervised visual feature
learning method (Finn et al., 2016) to learn
cost functions dependent on visual input

« Challenges of Nonlinear Cost Functions

Introduce significant model complexity.
Requires regularization to mitigate overfitting.

» Existing Regularization Methods

2024/1/20

Penalize the [,or [, norm of the cost
BSQ%Teters (Ziebart, 2010; Kalakrishnan et al.,

Insufficient for high-dimensional nonlinear cost
functions.

* Local Change Rate Regularization (General)

Encourages the cost of demo and sample
trajectories to change at a constant rate.

Reduces high-frequency fluctuations indicative of
overfitting and promote$ cost redistribution.

Formula:
Gicr (1) = z [(co(xes1) — co(x)) — (co(xe) — co(xe-1)) 1°

XtET

* Monotonicity Regularization (Local)

Tailored for one-shot episodic tasks.

Uses squared hinge loss to ensure cost of demo
trajectories decreases monotonically over time.

Assumes tasks progress monotonically towards
goals on a potentially nonlinear manifold.

Formula:
Imono®) = ) [max(0, (¢9(x) = cp(¥e1) — D

XtET




6-1. Simulated Comparisons

o Tasks : 3 2D Navigation . t-*nl»-‘:_ rand. nt
« 2D Navigation =gy 1/ ey ety
 3-Link Arm
« 3D Peg Insertion

*= ours, rand, il
= uniform

 Methodology = == =
« Compared guided cost learning with prior sample-based methods on task Readig
performance and sample complexity. 08 18
« Used MuJoCo physics simulator for experiments. §°»8
« Sampled from different initializations and regularizations (detailed in 804 [T 04N
AppendIX E) 00.2 ; - Y By green: goal
° Samphng Methods ol - - '65~-~-—-— ps = red: obstacles
« Used suboptimal samples for estimating the partition function. s Peg Insertion initial
« Samples obtained either by a baseline random controller or by fitting a L - state
linear-Gaussian controller to demonstrations. WA
= . _‘30.2 ’ k\/'l \'\;_ . ; voal
« Key Findings | | | | _ | L = i S State
« More complex cost function required for precise tasks like peg insertion. L ‘ ek epctd
« Demonstrations and additional samples provided better learning for ; ® “tamples ** %
Complex tas ks. Figure 2. Comparison to prior work on simulated 2D navigation,
 Prior methods required additional samples, but did not improve e i o per o nice B e
performance with more samples from the same distribution. e b G e ]
insertion, the depth of the hole is 0.1m, marked as a dashed line.

* Proposed method effectively handled complex, high-dimensional tasks. pistances larger than this amount failed to insert the peg.
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o0-2. Real-world robotics

[ J
Tasks : : : dish (NN) RelEnt IRL || GCL g(ut|x¢) | GCL reopt.
* Placing a Plate into a Dish Rack SUCCESS Tale 0% 100% 100%
* Pouring Almonds from One Cup to Another # samples 100 90 90
pouring (NN) || RelEnt IRL || GCL g(u:|x:) | GCL reopt.
° ReSUItS success rate 10% 84.7 % 34%
e Dish Rack Task # samples 150,150 75,130 75,130
« Neural network-based method achieved 100% success rate. | pouring (affine) || RelEnt IRL || GCL g(u¢|x;) | GCL reopt.
o : : ) success rate 0% 0% -
Relative entropy IRL failed (0% success). Fsamplos e o -

* Pouring Task
* Neural network method had an 84.7% success rate; affine cost function failed.
* Neural network method required fewer samples than relative entropy IRL.

* Generalizability
« Learned cost used to optimize policies for new positions successfully.
* Demonstrates the need for rich function approximators in complex domains.

* Insights

: Learn_ig_d policies succeeded even when cost functions were local and too
specific.

* Indicates potential for further exploration of training on different novel instances
to improve generalizability.

2024/7/19




(. Discussion

Main Challenge
1. The need for informative features and effective regularization to impose
structure on the cost.
2. The difficulty of learning the cost function under unknown dynamics for high-
dimensional continuous systems.

Contribution

1.  This paper presents an algorithm capable of learning arbitrary nonlinear cost
functions, such as neural networks, without meticulous feature engineering.

2. This paper formulates an efficient sample-based approximation for MaxEnt
IOC.

Validation

Future Work

+ Extend approach to learn cost functions directly from natural images.

* Introduce regularization methods developed for domain adaptation in computer vision (Tzeng
et al., 2015).

* Encode prior knowledge that demonstrations have similar visual features to samples.
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